Study on elemental analysis of metal and ceramic samples by using laser ablation ion trap mass spectrometry(LAITMS)

레이저 이온화 이온트랩 질량분석법을 이용한 금속 및 세라믹 시료의 원소분석에 관한 연구

  • 송규석 (한국원자력연구소, 양자광학팀) ;
  • 박현국 ((주)옵트론-텍 부설 광전자 연구소) ;
  • 차형기 (한국원자력연구소, 양자광학팀) ;
  • 이상천 (경남대학교, 정밀화학공학부)
  • Received : 2001.09.11
  • Published : 2002.02.25


Laser ablation ion trap mass spectrometry (LAITMS) was developed for the analysis of metal and ceramic samples. For this study, XeCl excimer laser (308 nm) was used for ablating the samples and ITMS was used as a detector. Samples were introduced from outside of a ring electrode and this way of sample introduction was very effective for solid samples when laser ablation was employed. Helium gas was used as a buffer gas, and its effect on sensitivity and some parameters (buffer gas pressure, ion storage time, and cut-off RF voltage) were studied. The optimized conditions were $1{\times}10^{-4}$ Torr of buffer gas pressure, 100 ms of ion storage time and $1150V_{p-p}$ of cut-off RF voltage. From that results, copper (Cu) and molybdenum (Mo) metals were tested with LAITMS and the mass spectra of these pure metals were compared with the natural abundance of isotope ratio. We also examined ceramic samples ($Al_2O_3$, $ZrO_2$) and represented the result of elemental analysis.


  1. Analytical Chemistry v.68 no.3 Pulsed Gas Introduction for Increasing Peptide CID Efficiency in a MALDI/Quadrupole Ion Trap Mass Spectrometer V. M. Doroshenko;R. J. Cotter
  2. Analytical Chemistry v.71 no.8 An Integrated Microfabricated Device for Dual Microdialysis and On-Line ESI-Ion Trap Mass Spectrometry for Analysis of Complex Biological Samples F. Xiang;Y. Lin;J. Wen;D. W. Matson;R. D. Smith
  3. Rapid Communications in Mass Spectrometry v.10 no.9 Direct Sampling and Analysis of Volatile Organic Compounds in Air by Membrane Introduction and Glow Discharge Ion Trap Mass Spectrometry with Filtered Noise Fields S. M. Gordon;P. J. Callahan;D. V. Kenny<1038::AID-RCM623>3.0.CO;2-Y
  4. Spectrochim. Acta. v.50B A. W. Garrett;P. H. Hemberger;N. S. Nogar
  5. Microchem. J. v.63 no.9 K. H. Hong;K. Song;H. Cha;M. Yang;J. Lee;G. H. Lee
  6. Physical Review A v.26 no.4 R. Fabbro;E. Fabre;F. Amiranoff;C. Gardan-Labaune
  7. Microchem. J. K. Song;H. Cha;J. Lee;G. H. Park;S. C. Lee
  8. Journal of Radioanalytical and Nuclear Chemistry v.241 no.3 Identification of 137Cs in an individual microparticle by laser desorption/ionization ion trap mass spectrometer K. H. Hong;K. Song;H. Cha;M. Yang;J. Lee;C. W. Lee;G. H. Lee
  9. U. S. Patent 2,939,952
  10. Analytical Chemistry v.70 no.14 Stereochemical Differentiation of Mannose, Glucose, Galactose, and Talose Using Zinc(II) Diethylenetriamine and ESI-Ion Trap Mass Spectrometry S. P. Gaucher;J. A. Leary
  11. J. Kor. Phys. Soc. v.35 K. Song;K. H. Hong;M. Yang;H. Cha;J. Lee;G. H. Lee
  12. Analytical Chemistry v.66 no.13 Ion trap mass spectrometry of externally generated ions S. A. McLuckey;G. J. V. Berkel;D. E. Goeringer;G. L. Glish
  13. Anal. Chem. v.64 A. McIntosh;T. Donovan;J. Brodbelt
  14. Microchemical Journal v.68 no.2-3 K. Song;H. Cha;J. Lee;G. H. Park;S. C. Lee
  15. Rapid Communications in Mass Spectrometry v.11 no.6 Laser Ablation Ion Trap Mass Spectrometry—Storage Field Suppression and its Effect Upon Analytical Performance C. G. Gill;A. W. Garrett;N. S. Nogar;P. H. Hemberger<551::AID-RCM914>3.0.CO;2-F
  16. Spectrochim. Acta. v.50B A. W. Garrett;P. H. Hemberger;N. S. Nogar
  17. Rapid Communications in Mass Spectrometry v.10 no.3 S. A. McLuckey;D. E. Goeringer;K. G. Asano;G. Vaidyanathan;J. L. Stephenson, Jr.<287::AID-RCM429>3.0.CO;2-H
  18. Practical Aspects of Ion Trap Mass Spectrometry v.Ⅱ R. E. March;J. F. J. Todd
  19. JAAS v.8 C. G. Gill;M. W. Blades
  20. TrAC Trends in Analytical Chemistry v.7 no.4 Laser ablation and the laser microprobe S. J. Hein;E. H. Piepmeier