Wettability and Aging Effect of Polystyrene Film Treated by PSII according to the Molecular Weight

플라즈마 이온주입 방법으로 처리된 폴리스티렌의 분자량에 따른 표면 친수성 및 에이징 현상

  • Kim, Youngsoo (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Lim, Hyuneui (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Han, Seunghee (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Lee, Yeonhee (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Youngsang (Department of Chemistry, Korea University)
  • 김영수 (한국과학기술연구원, 특성분석센터) ;
  • 임현의 (한국과학기술연구원, 특성분석센터) ;
  • 한승희 (한국과학기술연구원, 특성분석센터) ;
  • 이연희 (한국과학기술연구원, 특성분석센터) ;
  • 김영상 (고려대학교 자연과학대학 신소재화학과)
  • Received : 2002.03.26
  • Published : 2002.06.25


Plasma source ion implantation (PSII) technique was utilized to improve the wettability of polystyrene surfaces. It is well known that treated surfaces undergo aging, leading to hydrophobic recovery with time. We investigated the aging effect of polystyrene thin film on the various molecular weights. Polystyrenes with several molecular weights ($M_w$ = 760, 2430, 31600, 115700, 280000, 903600) were treated in different experimental conditions including gas species and pulse energy, and their hydrophilicity was measured by contact angle goniometer. To study wettability decay as a function of the molecular weight, PSII-treated samples were aged at different temperatures. Hydrophobic recovery of high molecular weight polystyrene was much slower than that of low molecular weight, even at high temperatures. The methods used to characterize treated surfaces were water contact angle measurement, TOF-SIMS, XPS, SEM and AFM.


Supported by : 과학기술부, 한국과학재단


  1. J. Lee, H. Kim, P. Park, H. Lee, J. Polym. Sci. Part A : Polym Chem., 32, 1569 (1994)
  2. D. L. Flamm and V. M. Donnelly, Plasma Chem. Plasma Process., 1, 317 (1981)
  3. J. R. Conrad, 'U. S. Patent' 4. 764. 394. 1998
  4. S. Han, H. Kim, Y. Lee, J. Lee, S, Kim, Surf. Coat. Technol., 82, 270 (1996)
  5. K. H. Bather, V. Herrmann Surf. Coat. Technol., 74, 670 (1995)
  6. D. W. Dwight, W. M. Riggs, J. Colloid Interface Sci., 47, 650(1994)
  7. N. Sprang, D. Theirich, J. Engemann, Surf. Coat. Technol. 74-75, 689 (1995)
  8. H. Lim, Y. Lee, S. Han, J. Cho, K. Kim, J. Vac. Sci Technol. A 19 1490 (2001).
  9. E. C. Onyiriuka, L. S. Hersh, and W. Hertel, J. Colloid Interface Sci., 144, 98 (1991)
  10. J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, J. Appl. Phys. 62, 4591 (1987)
  11. R, D. Astumian and Z. A. Schelly, J. Am. Chem. Soc., 106, 304(1984)
  12. L. J. Gerenser, J. Adhes. Sci. Technol., 1, 303(1987)
  13. F. Garbassi, M. Morra, and E. Occhiello, 'Polymer Surfaces', John Wiley & Sons, New York, 1994
  14. I. Sutherland, D. M. Brewis, R. J. Heath, and E. Sheng, Surf. Interface Anal. 17, 507 (1991)
  15. E. Occhiello and F, Garbassi, 'International Encyclopedia of Composites', Vol. 5, 390, S. M. Lee, Ed., VCH, New York, 1991