Rapid Quantitative Analysis of Vancomycin in Human Plasma and Urine Using LC-MS/MS

LC - MS/MS를 이용한 혈장과 뇨중에서 Vancomycin의 빠른정량분석

  • Kim, Hohyun (Department of Pharmacokinetics, Seoul Medical Science Institute (SCL)) ;
  • Roh, Hyeongjin (Department of Pharmacokinetics, Biocore. Co. Ltd.) ;
  • Han, Sang-Beom (Department of Pharmacokinetics, Seoul Medical Science Institute (SCL))
  • Received : 2002.05.08
  • Published : 2002.10.25

Abstract

In this study, a new quantitative analytical method has been developed for the rapid determination of vancomycin in human plasma and urine using liquid chromatography/tandem mass spectrometry (LC - MS/MS). Chromatography was carried out on a $C_{18}$ XTerra MS column ($2.1{\times}30mm$) with a particle size of $3.5{\mu}m$. The mobile phase was 0.25% formic acid in 10% acetonitrile and the flow rate was $250{\mu}L/min$. Vancomycin and caffeine (internal standard) were detected by MS/MS using multiple reaction monitoring (MRM). Vancomycin gives a predominant doubly protonated precursor molecule ($[M+2H]^{2+}$) at m/z 725.0 and a corresponding product ion of m/z 100.0. Detection of vancomycin was good, accurate and precise, with a limit of detection of 1 nM in plasma. The calibration curves for vancomycin in human plasma was linear in a concentration range of $0.01{\mu}M$ - $100{\mu}M$ for plasma. This method has been successfully applied to determine the concentration of vancomycin in human plasma and urine from pharmacokinetic study and relative studies.

Keywords

Liquid Chromatography;Tandem Mass Spectrometry;Vancomycin;Pharmacokinetics

References

  1. R. E. VanScoy, S. N. Cohen, J. E. Geraci and J. A. Washington, Mayo Clin. Proc., 52, 216-219 (1977).
  2. M. T. Suller and d. Lloyd, J. Appl. Microbiol., 92(5), 866-872 (2002).
  3. J. Luksa and A. Marusic, J. Chromatogr. B, 667, 277-281 (1995).
  4. L. O. White, H. A. Holt, D. S. Reeves and A. P. MacGowan, J. Antimicrob. Chemother., 39(3), 355-361 (1997).
  5. H. Hosotsubo, J. Chromatogr., 487(2), 421-427 (1989).
  6. P. E. Reynolds, Eur. J. Clin. Microbiol. Infect. Dis., 8, 943-950 (1989).
  7. D. W. Backes, H. I. Aboleneen and J. A. Simpson, J. Pharm. Biomed. Anal., 16, 1281-1287 (1998).
  8. B. Robredo, K. V. Singh, F. Baquero, B.E. Murray and C. Torres, J. Food Microbiol., 54(3), 197-204 (2000).
  9. R. Lorenz, M. Herrmann, A. M. Kassem, N. Lehn, H. Neuhaus and M. Classen, Endoscopy, 30(8), 708-712 (1998).
  10. D. Farin, G. A. Piva, I. Gozlan and R. Kitzes-Cohen, J. Pharm. Biomed. Anal., 18(3), 367-372 (1998).
  11. E. M. Tracy and s. DiTaranto, J. Pediatr. Oncol. Nurs., 19(2), 60-61 (2002).
  12. P. Favetta, J. Guitton, N. bleyzac, C. Dufresne and J. Bureau, J. Chromatogr. B, 751, 377-382 (2001).
  13. R. Nagarajan, Glycopeptide Antibiotics, 63, ISBN 0-8247-9193 (1994).
  14. A. L. Somerville, D. H. wright and J. C. Rotschafer, Pharmacotherapy, 19(6), 702-707 (1999).
  15. J. J. McAtee, S. L. Castle, Q. Jin and D. L. Boger, Bioorg. Med. Chem. Lett., 12(9), 1319-1322 (2002).
  16. J. E. Geraci and P. E. Hermans, Mayo Clin. Proc., 58, 88-91 (1983).
  17. J. E. Geraci, Mayo Clin. Proc., 52, 631-634 (1977).
  18. J. Bauchet, E. Pussard and J. J. Garaud, J. Chromatogr., 414, 472-476 (1987).
  19. L. M. Perino and B. A. Mueller, Ann Pharmacother., 27(7-8), 892-893 (1993).