Quantitation of Phthalate and Adipate in Natural Mineral Water and PET Container

먹는 샘물 및 PET 용기 중 Phthalate와 Adipate의 정량분석

  • Shin, Ueon-Sang (Korea Institute of Science and Technology) ;
  • Ahn, Hye-Sil (Department of Environmental Science, Kongju National University) ;
  • Shin, Ho-Sang (RRC/NMR, Drug Abuse Research Center, Kongju National University)
  • 신원상 (한국과학기술연구원) ;
  • 안혜실 (공주대학교, 환경과학과 대학원) ;
  • 신호상 (공주대학교, RRC/NMR, 약물남용연구소)
  • Received : 2002.07.11
  • Published : 2002.10.25


The determination of phthalates and adipate in natural mineral water and its container is described. Phthalates and adipate were extracted from natural mineral water by liquid-liquid extraction with methylene chloride, concentrated and then injected in GC-MS (SIM). Phthalates and adipate from 1) PET, cap, label and glue were extracted in Soxhlet with 50 mL of carbon tetrachloride, purified with silicagel and detected with GC-MS (SIM). Peak shapes and quantitation of phthalates and adipate were excellent, with linear calibration curves over a range of $0.1{\sim}10{\mu}g/L$ in water sample ($r^2$ > 0.996) and over a range of $1{\sim}1,000{\mu}g/Kg$ in solid samples ($r^2$>0.994). The detection limits of analytes were $0.002{\sim}0.010{\mu}g/L$ in water and $0.01{\sim}0.02{\mu}g/Kg$ in solid samples. Five kinds of natural mineral water samples, two PETs, two labels, two caps and two glues were quantified by the described procedure. As a results, the concentrations of total phthalates in natural mineral water ranged from ND ~ 1.2 ng/mL. Otherwise, the concentrations of total phthalate extracted from PET ranged from 0.55 ~ 1.2 mg/Kg. We found that the accurate determination of phthalte and adipate in natural mineral water and container must be considered blank correction and the removal of label and glue in PET sample.


  1. J. -H. Kim, Anal. Sci. & Technol 14, 95 (2001).
  2. Y. -S. Fung, A. Shin-Kwan Tang, Fresenius' J. Anal. Chem. 350, 721 (1993).
  3. G. I. Baram, I. N. Azarova, A. G. Gorshkov, A. L. Vereshchagin, B. Lang, E. D. Kiryukhina, J. Anal. Chem. 55, 750 (2000).
  4. J. -D. Berset, R. Etter-Holzer, J. AOAC, 84, 383 (2001).
  5. K. Holadova, J. Hajslova, Int. J. Environ. Anal. Chem. 59, 43 (1995).
  6. J. Bartulewicz, E. Bartulewicz, J. Gawlowski, J. Niedzielski, Chem. Anal. 41, 753 (1996).
  7. M. Castillo, A. Oubina, D. Barcelo, Environ. Sci. Technol. 32, 2180 (1998).
  8. S. Jobling, T. Reynolds, R. White, M. G. Parker, J. P. Sumpter, Environ. Health Persp. 103, 582 (1995).
  9. W. C. Brumley, E. M. Shafter, P. E. Tillander, J. AOAC 77, 1230 (1994).
  10. S. Jara, C. Lysebo, T. Greibrokk, E. Lundanes, Anal. Chem. Acta 407, 165 (2000).
  11. K. Kambia, T. Dine, B. Gressier, A. -F. Germe, M. Luyckx, C. Brunet, L. Michaud, Gottra, J. Chromatogr. B 755, 297 (2001).
  12. A. Penalver, E. Pocurull, F. Borrull, R. M. Marce, J. Chromatogr. A 872, 191 (2000).
  13. J. -H. Kim, Anal. Sci. & Techol 14, 244 (2001).
  14. M. Castillo, D. Barcelo, A.S. Pereira, F. R. Aquino Neto, Trends Anal. Chem. 18, 16 (1999).
  15. S. -U. Myung, Y. -J, Chang, H. -K. Min, M. -S. Kim, Anal. Sci. & Techol 13, 616 (2000).
  16. C. George, H. Prest, LC GC North America 20, 142 (2002).
  17. A. Yasuhara, H. Shiraishi, M. Nishikawa, T. Yamamoto, T. Uehiro, O. Nakasugi, T. Okumura, K. Kenmotsu, H. Fukui, M. Nagase, Y. Ono, Y. Kawagoshi, K. Baba, Y. Noma, J. Chromatogr. A 774, 321 (1997)