DOI QR코드

DOI QR Code

Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

  • Jung, Young-Mee (Department of Chemistry, Pohang University of Science and Technology)
  • Published : 2003.09.20

Abstract

Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.

References

  1. Jung, Y. M.; Shin, S. H.; Kim, S. B.; Noda, I. Appl. Spectrosc.2002, 56, 1562. https://doi.org/10.1366/000370202321116020
  2. Czarnecki, M. A. Appl. Spectrosc. 1998, 52, 1583. https://doi.org/10.1366/0003702981943086
  3. Noda, I. Appl. Spectrosc. 2000, 54, 994. https://doi.org/10.1366/0003702001950472
  4. Martens, H.; Naes, T. Multivariate Calibration; John Wiley &Sons: New York, 1991.
  5. Buchet, R.; Wu, Y.; Lachenal, G.; Raimbault, C.; Ozaki, Y. Appl.Spectrosc. 2001, 55, 155. https://doi.org/10.1366/0003702011951452
  6. Malinowski, E. R. Factor Analysis in Chemistry, 2nd Ed.; Wiley:New York, 1991.
  7. Noda, I. Appl. Spectrosc. 1993, 47, 1329. https://doi.org/10.1366/0003702934067694
  8. Vandeginste, B. G. M.; Massart, D. L.; Buydens, L. M. C.; DeJong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook ofChemometrics and Qualimetrics, Part B; Elsevier Science, B. V.:Amsterdam, The Netherlands, 1998; pp 88-104.
  9. Tandler, P. J.; Harrington, P. B.; Richardson, H. Anal. Chim. Acta1998, 368, 45. https://doi.org/10.1016/S0003-2670(98)00195-0
  10. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.; Ozaki, Y. Appl.Spectrosc. 2000, 54, 236A. https://doi.org/10.1366/0003702001950454
  11. Muller, M.; Buchet, R.; Fringeli, U. P. J. Phys. Chem. 1996, 100,10810. https://doi.org/10.1021/jp9602843
  12. Noda, I. Appl. Spectrosc. 1990, 44, 550. https://doi.org/10.1366/0003702904087398
  13. Appl. Spectrosc. v.44 Noda, I. https://doi.org/10.1366/0003702904087398

Cited by

  1. New Approaches to Generalized Two‐Dimensional Correlation Spectroscopy and Its Applications vol.41, pp.5, 2006, https://doi.org/10.1080/05704920600845868
  2. -Isopropylacrylamide) vol.63, pp.6, 2009, https://doi.org/10.1366/000370209788559575
  3. Multivariate methods for the identification of adulterated milk based on two-dimensional infrared correlation spectroscopy vol.6, pp.10, 2014, https://doi.org/10.1039/c4ay00442f
  4. Smooth Factor Analysis (SFA) to Effectively Remove High Levels of Noise from Spectral Data Sets vol.72, pp.5, 2018, https://doi.org/10.1177/0003702817752126