Cure Kinetics and Mechanical Interfacial Characteristics of Zeolite/DGEBA Composites

제올라이트/DGEBA 복합재료의 경화 동력학과 기계적 계면특성

  • Soo-Jin Park (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Young-Mi Kim (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jae-Sup Shin (Department of Chemistry, Chungbuk National University)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김영미 (한국화학연구원 화학소재연구부) ;
  • 신재섭 (충북대학교 화학과)
  • Published : 2003.10.20


In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-diamino diphenyl methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD). Cure kinetics of the composites were examined in the context of differential scanning calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor($K_{IC}$) and critical strain energy release rate($G_{IC}$). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, $Si_{2p}/Al{2p}$ composition ratios of the treated zeolite were increased, which could be attributed to the weakening of Al-O bond in framework. Cure activation energy($E_a$) of 15-BZ composites was decreased, whereas KIC and $G_{IC}$ were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite.


  1. Cleveland, O. H. Handbook of chemistry and physics;Chemical Rubber Co., 1983.
  2. Pressly, T. G.; Keskkula, H.; Paul, D. R. Polymer 2001,42, 3043.
  3. Kang, S. K.; Hong, S. I.; Choe, C. R.; Park, M.; Rim,S.; Kim, J. Polymer 2001, 42, 879.
  4. No, K. T.; Chon, H. Z.; Lee, T. K.; John, M. S. J. Phys.Chem. 1981, 85, 2065.
  5. Vijayalakshmi, R.; Kapoor, S.; Kulshreshtha, S. K. SolidState Sciences 2002, 4, 489.
  6. Park, S. J.; Kim, T. J.; Lee, J. R. J. Polym. Sci. B:Polym. Phys. 2000, 38, 2114.<2114::AID-POLB50>3.0.CO;2-8
  7. Breck, D. W. Zeolite molecular sieve; John Wiley &Sons: New York, 1974.
  8. Lee, J. Y.; Shim, M. J.; Kim, S. W. Mater. Chem. Phys.1997, 48, 36.
  9. Park, S. J. Encyclopedia of surface and colloid science:van der Waals interactions at surface; Hubbard, A. T.,Ed; Marcel Dekker: New York, 2002.
  10. Cheng, K. C.; Chiu, W. Y. Macromolecules 1993, 26,4665.
  11. Kaushik, V. K.; Vijayalakshmi, R. P.; Choudary, N. V.;Bhat, S. G. T. Microporous Mesoporous Mater. 2002,51, 139.
  12. Calson, T. A. Photoelectron and auger spectroscopy;2nd Ed.; Pleum Press: New York, 1978.
  13. Bidstrup, S. U.; Macosko, C. W. J. Polym. Sci., Polym.Phys. Ed. 1990, 28, 691.
  14. Park, S. J.; Donnet, J. B. J. Colloid Interface Sci. 1998,206, 29.
  15. Iranmahboob, J.; Hill, D. O.; Toghiani, H. App. Catal.A: Gen. 2002, 231, 99.
  16. Lee, H.; Neville, K. Handbook of epoxy resins; McGraw-Hill: New York, 1990.
  17. Garcia-Martinez, J.; Cazorla-Amoros, D.; Linares-Solano,A.; Lin, Y. S. Microporous Mesoporous Mater. 2001,42, 255.
  18. Chau, J. L. H.; Tellez, C.; Yeung, K. L.; Ho, K. J.Membr. Sci. 2000, 164, 257.
  19. Kissinger, H. E. J. Res. Nat. Bureau Stand. 1956, 57,2712.
  20. Park, S. J.; Seo, M. K.; Lee, J. R. J. Appl. Polym. Sci.2001, 79, 2299.<2299::AID-APP1037>3.0.CO;2-S
  21. Kim, J. T.; Kim, M. C.; Okamato, Y.; Imanaka, T. J.Catal. 1989, 115, 319.
  22. Park, S. J.; Jang, Y. S. J. Colloid Interface Sci. 2001,237, 91.