DOI QR코드

DOI QR Code

Thallium(Ⅰ)-Selective Membrane Potentiometric Sensor Based on Dibenzyldiaza-18-Crown-6

  • Published : 2003.04.20

Abstract

A new thallium(Ⅰ) selective electrode based on dibenzylidaza-18-crown-6 as mambrane carrier was successfully prpared. The electrode exhibitis a near-Nernstian response for $ T1^+$ ions over a wide concentration range from $1.0×10^{15}-1.0×10^{-1}$M at 25℃, and was found to be selective, precise and useable within the pH range 4.0-11.0. The electrode was successfully used as an indicator electrode in potentiometric titration of thallium ions.

References

  1. Moeschlin, S. Clin. Toxicol. 1980, 17, 133. https://doi.org/10.3109/15563658008985073
  2. Britten, J. S.; Blank, M. Biochim. Biophys. Acta 1968, 159, 160. https://doi.org/10.1016/0005-2744(68)90254-4
  3. Khayatian, G.; Shariati, S.; Shamsipur, M. J. Incl. Phenom. in press.
  4. Eyle, E.; Rechnitz, G. A. Anal. Chem. 1971, 43, 1090. https://doi.org/10.1021/ac60303a031
  5. Anderson, A. L. Thesis; State College: Washington, 1955.
  6. Shariati, S.; Khayatian, G. M.S. Thesis; Kurdistan University:Sanandaj, Iran, 2003.
  7. Ammann, D.; Morf, W. E.; Anker, P.; Meier, P. C.; Pretsch, E.;Simon, W. Ion-Sel. Electrode Rev. 1983, 5, 3. https://doi.org/10.1016/B978-0-08-031492-1.50005-X
  8. Rosatzin, T.; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chim. Acta1993, 280, 197. https://doi.org/10.1016/0003-2670(93)85122-Z
  9. Yang, X.; Kumar, N.; Chi, H.; Hibbert, D. B.; Alexander, P. N. W.Electroanalysis 1997, 9, 549. https://doi.org/10.1002/elan.1140090709
  10. Coetzee, C. J.; Basson, A. J. Anal. Chim. Acta 1973, 64, 300. https://doi.org/10.1016/S0003-2670(01)82452-1
  11. Bakker, E.; Buhlmann, D.; Pretsch, E. Chem. Rev. 1997, 97, 3083. https://doi.org/10.1021/cr940394a
  12. Fakhari, A. R.; Ganjali, M. R.; Shamsipur, M. Anal. Chem. 1997,69, 3693. https://doi.org/10.1021/ac970133b
  13. Yamashoji, Y.; Tanaka, M.; Nagamune, S.; Ouchi, M.; Hakushi, T.; Shono, T. Anal. Sci. 1991, 7, 485. https://doi.org/10.2116/analsci.7.485
  14. Shamsipur, M.; Khayatian, G. J. Incl. Phenom. 2001, 39, 109. https://doi.org/10.1023/A:1008144802638
  15. Kul'ba, F. Y.; Mironov, V. E. Zh. Neorg. Khim. 1957, 2, 2741.
  16. Suzuki, S. J. Chem. Soc. Japan 1953, 74, 219.
  17. Pedersen, C. J. J. Am. Chem. Soc. 1970, 92, 386. https://doi.org/10.1021/ja00705a605
  18. Tavakkoli, N.; Shamsipur, M. Anal. Lett. 1996, 29, 2269. https://doi.org/10.1080/00032719608002251
  19. Mashhadizadeh, M. H.; Shamsipur, M. Anal. Chim. Acta 1999, 381, 111. https://doi.org/10.1016/S0003-2670(98)00672-2
  20. Shannon, R. D. Acta Crystallogr. 1976, 32A, 751.
  21. Coetzee, C. J. Talanta 1985, 32, 821. https://doi.org/10.1016/0039-9140(85)80190-9
  22. Szeczepaniak, W.; Ren, K. Anal. Chim. Acta 1976, 82, 37. https://doi.org/10.1016/S0003-2670(01)82201-7
  23. Saleh, M. B. J. Electroanal. Chem. 1998, 448, 33. https://doi.org/10.1016/S0022-0728(97)00514-7
  24. Schaller, U.; Bakker, E.; Spichiger, U. E.; Pretsch, E. Anal. Chem.1994, 60, 391.
  25. Kayne, F. J. Arch. Biochem. Biophys. 1971, 143, 232. https://doi.org/10.1016/0003-9861(71)90204-9
  26. Park, K. S.; Jung, S. O.; Lee, S. S.; Kim, J. S. Bull. Korean Chem. Soc. 2000, 21, 909.
  27. Gehring, P. M.; Morf, W. E.; Welti, M.; Pretsch, E.; Simon, W.Helv. Chim. Acta 1990, 73, 203. https://doi.org/10.1002/hlca.19900730124
  28. Kamata, S.; Yamasaki, K.; Higo, M.; Bhale, A.; Fukunaga, Y. Analyst 1988, 45, 113.
  29. Ammann, D.; Pretsch, E.; Simon, W.; Lindner, E.; Bezegh, A.;Pungor, E. Anal. Chim. Acta 1985, 171, 119. https://doi.org/10.1016/S0003-2670(00)84189-6
  30. Eugster, R.; Gehring, P. M.; Morf, W. E.; Spichigor, U.; Simon, W.Anal. Chem. 1990, 63, 2285. https://doi.org/10.1021/ac00020a017
  31. Coetzee, C. J.; Basson, A.J. Anal. Chim. Acta 1977, 92, 399. https://doi.org/10.1016/S0003-2670(01)93516-0
  32. Jabbari, A.; Hasani, M.; Shamsipur, M. J. Incl. Phenom. 1993, 15, 329. https://doi.org/10.1007/BF00708750
  33. Feriser, H.; Fernando, Q. Ionic Equilibria in Analytical Chemistry,2nd ed; Wiley: New York, 1966.
  34. Noyes, A. A. Z. Phys. Chem. 1892, 9, 603.
  35. Tamura, H.; Kimura, K.; Shono, T. J. Electroanal. Chem. 1980, 115, 115. https://doi.org/10.1016/S0022-0728(80)80499-2
  36. Masuda, Y.; Yakabe, K.; Shibutani, Y.; Shono, T. Anal. Sci. 1994,10, 491. https://doi.org/10.2116/analsci.10.491

Cited by

  1. Charge-Transfer Triiodide Ion-Selective Electrode Based on 7,16-Dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane vol.21, pp.3, 2005, https://doi.org/10.2116/analsci.21.297
  2. Studies on the Preparation and Analytical Applications of Various Metal Ion-Selective Membrane Electrodes Based on Polymeric, Inorganic and Composite Materials—A Review vol.45, pp.12, 2008, https://doi.org/10.1080/10601320802458178
  3. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors vol.8, pp.3, 2008, https://doi.org/10.3390/s8031645
  4. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  5. Development of an electrochemical sensor based on Schiff base for Cu(II) determination at nano level in river water and edible materials vol.89, pp.15, 2009, https://doi.org/10.1080/03067310902719167
  6. A potentiometric sensor of silver ions based on the Schiff base of diphenol vol.16, pp.8, 2012, https://doi.org/10.1007/s10008-012-1682-y
  7. Selective Thallium (I) Ion Sensor Based on Functionalised ZnO Nanorods vol.2012, pp.1687-9511, 2012, https://doi.org/10.1155/2012/619062
  8. Experimental design as an optimization approach for fabrication a new selective sensor for thallium(I) based on calix[6]arene vol.69, pp.7, 2014, https://doi.org/10.1134/S1061934814070089
  9. Novel thallium(I) ion-selective electrodes with poly(vinyl chloride) membranes based on three noncyclic crown-type polyethers as suitable neutral ionophores vol.12, pp.2, 2015, https://doi.org/10.1007/s13738-014-0488-5
  10. Ion in Environmental Samples by Fabrication of Pyrolytic Graphite Electrode Based on Schiff Bases of Hydrazinecarbothioamide Derivatives vol.164, pp.9, 2017, https://doi.org/10.1149/2.1361709jes
  11. -crown ether complexes vol.24, pp.3, 2018, https://doi.org/10.1177/1469066717752794
  12. Novel Thallium(III) Solid-Contact Ion-Selective Electrode with Electropolymerized Transducer vol.18, pp.13-14, 2006, https://doi.org/10.1002/elan.200503522
  13. Tripodal chelating ligand-based sensor for selective determination of Zn(II) in biological and environmental samples vol.388, pp.8, 2007, https://doi.org/10.1007/s00216-007-1434-5
  14. Electroanalytical performance of a terbium(III)-selective sensor based on a neutral ionophore in environmental and medicinal samples vol.390, pp.8, 2008, https://doi.org/10.1007/s00216-008-1936-9
  15. Polymeric membrane and coated graphite electrode based on newly synthesized tetraazamacrocyclic ligand for trace level determination of nickel ion in fruit juices and wine samples vol.63, pp.1-2, 2009, https://doi.org/10.1007/s10847-008-9492-7
  16. New PVC-membrane electrode based on charge-transfer inclusion complex between I2 and 1,4,8,11-tetraazacyclotetracdecane for selective determination of I3 − ions vol.67, pp.1-2, 2010, https://doi.org/10.1007/s10847-009-9693-8