DOI QR코드

DOI QR Code

Generalized Two-dimensional (2D) Correlation Spectroscopy: Principle and Its Applications

일반화된 이차원 상관 분광학: 원리 및 응용

  • Young Mee Jung (Department of Chemistry, Pohang University of Science and Technology) ;
  • Seung Bin Kim (Department of Chemistry, Pohang University of Science and Technology)
  • 정영미 (포항공과대학교 화학과) ;
  • 김승빈 (포항공과대학교 화학과)
  • Published : 2003.10.20

Abstract

Generalized 2D correlation spectroscopy has been applied extensively to the analysis of spectral data sets obtained during the observation of a system under some external perturbation. It is used in various fields of spectroscopy including IR, Raman, UV, fluorescence, X-ray diffraction, and X-ray absorption spectroscopy (XAS) as well as chromatography. 2D hetero-spectral correlation analysis compares two completely different types of spectra obtained for a system under the same perturbation. Because of the wide range of applications of this technique, it has become one of the standard analytical techniques for the analytical chemistry, physical chemistry, biochemistry, and so on, and for studies of polymers, biomolecules, nanomaterials, etc. In this paper, we will introduce the principle of generalized 2D correlation spectroscopy and its applications that we have studied.

Keywords

Two-Dimensional (2D) Correlation Spectroscopy;Protein;Polymer;Thin Film;Nanoparticle

References

  1. Ozaki, Y.; Sasiae, S.; Tanaka, T.; Noda, I. Bull. Chem. Soc. Jpn. 2001, 74, 1. https://doi.org/10.1246/bcsj.74.1
  2. Choi, H. C.; Jung, Y. M.; Noda, I.; Kim, S. B. J. Phys. Chem. B 2003, 107, 5806. https://doi.org/10.1021/jp030438w
  3. Chen, L.; Carland, M. Appl. Spectrosc. 2003, 57, 331 https://doi.org/10.1366/000370203321558254
  4. Jung, Y. M.; Shin, H. S.; Noda, I; Kim, S. B. Appl. Spectroscopy 2002, 56, 1568 https://doi.org/10.1366/000370202321116039
  5. OReilly, J. M.; Teegarden, D. M; Mosher, R. A. Macromolecules 1981, 14, 1693. https://doi.org/10.1021/ma50007a015
  6. Grohens, Y.; Prudhomme, R. E.; Schultz, J. Macromolecules 1998, 31, 2545. https://doi.org/10.1021/ma961913+
  7. Choi, H. C.; Lee, S. Y.; Kim, S. B.; Kim, M. G.; Lee, M. K.; Shin, H. J.; Lee, J. S. J. Phys. Chem. B 2002, 106, 9252. https://doi.org/10.1021/jp0205968
  8. Schultz, C. P.; Fabian, H.; Mantsch, H. H. Biospectrosc. 1998, 4, 519.
  9. Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51, 526. https://doi.org/10.1366/0003702971940521
  10. Noda, I. Appl. Spectrosc. 2000, 54, 994. https://doi.org/10.1366/0003702001950472
  11. Noda, I. J. Am. Chem. Soc., 1986, 111, 8116.
  12. Choi, H. C.; Jung, Y. M.; Kim, S. B. Appl. Spectrosc. 2003, 57, 850. https://doi.org/10.1366/000370203322102951
  13. Sasiae, S.; Ozaki, Y. Anal. Chem. 2001, 73, 2294. https://doi.org/10.1021/ac0014010
  14. Shin, H. S.; Jung, Y. M.; Chang, T.; Ozaki, Y.; Kim, S. B. Vib. Spectrosc. 2002, 29, 79. https://doi.org/10.1016/S0924-2031(01)00186-2
  15. Ozaki, Y.; Noda, I. in Handbook of Vibrational Spectroscopy, Charlmers, J. M; Griffiths P. R. Eds, (John Wiely and Sons: Chichester, 2002), p.2123-2172.
  16. Lee, J.; Shin, S. J. Phys. Chem. B, 2002, 106, 8796. https://doi.org/10.1021/jp0141732
  17. Eads, C. D.; Noda, I. J. Am. Chem. Soc., 2002, 124, 1111. https://doi.org/10.1021/ja011819v
  18. Sasiae, S.; Muszynski, A.; Ozaki, Y. Appl. Spectrosc. 2001, 55, 343. https://doi.org/10.1366/0003702011951759
  19. Jung, Y. M.; Noda, I; Kim, S. B. Appl. Spectroscopy 2003, 57, 564. https://doi.org/10.1366/000370203321666605
  20. Jung, Y. M.; Noda, I; Kim, S. B. Appl. Spectroscopy 2003, 57, 850. https://doi.org/10.1366/000370203322102951
  21. Noda, I. Appl. Spectrosc. 1993, 47, 1329. https://doi.org/10.1366/0003702934067694
  22. Noda, I.; Liu, Y.; Ozaki, Y. J. Phys. Chem. 1996, 100, 8674. https://doi.org/10.1021/jp9534141
  23. Ataka, K.; Osawa, M. Langmuir, 1998, 14, 951. https://doi.org/10.1021/la971110v
  24. Jung, Y. M.; Czarnik-Matusewicz, B. Ozaki, Y. J. Phys. Chem. B 2000, 104, 7812. https://doi.org/10.1021/jp0008041
  25. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.; Ozaki, Y. Appl. Spectrosc. 2000, 54, 236A. https://doi.org/10.1366/0003702001950454
  26. Jung, Y. M.; Noda, I; Kim, S. B. Appl. Spectroscopy 2003, 57, 557. https://doi.org/10.1366/000370203321666597
  27. Shin, H. S.; Jung, Y. M.; Lee, J.; Chang, T.; Ozaki, Y.; Kim, S. B. Langmuir, 2002, 18, 5523.e https://doi.org/10.1021/la020135d
  28. Chae, B.; Jung, Y. M.; Wu, X.; Kim, S. B. J. Raman Spectrosc. 2003, 34, 451. https://doi.org/10.1002/jrs.1019
  29. Chae, B.; Lee, S. W.; Jung, Y. M.; Ree, M.; Kim, S. B. Langmuir 2003, 19, 687. https://doi.org/10.1021/la020453c
  30. Czarnecki, M. A.; Wu, P.; Siesler, H. W. Chem. Phys. Lett. 1998, 283, 326. https://doi.org/10.1016/S0009-2614(97)01397-3
  31. Grohens, Y.; Carriere, P.; Spevacek, J.; Schultz, J. Polymer 1999, 40, 7033. https://doi.org/10.1016/S0032-3861(99)00061-0
  32. Jung, Y. M.; Shin, H. S.; Czarnik-Matusewicz, B.; Noda, I.; Kim, S. B. Appl. Spectrosc. 2002, 56, 1562. https://doi.org/10.1366/000370202321116020
  33. Morita, S.; Ozaki, Y.; Noda, I Appl. Spectroscopy 2001, 55, 1618 https://doi.org/10.1366/0003702011954189