DOI QR코드

DOI QR Code

Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster

Au/Cu, Au/Ag 합금 나노 미립자의 합성과 광학적 성질

  • Na Hye Jin Na (SungKyunKwan Univ. Basic Science Research Institute) ;
  • Kyoung Chul Lee (SungKyunKwan Univ. Basic Science Research Institute) ;
  • Eun Ah Yoo (SungShin Women Univ. Depart. of Chemistry) ;
  • Kang Sup Chung (Korea Institute of Geoscience and Mineral Resources)
  • 나혜진 (성균관대학교 기초과학연구소) ;
  • 이경철 (성균관대학교 기초과학연구소) ;
  • 유은아 (성신대학교 화학화) ;
  • 정강섭 (한국지질자원연구소)
  • Published : 2003.08.20

Abstract

In this study, a new method is presented to produce stable hydrophobic metal alloy nanocluster in chloroform solution including surfactant NaAOT(sodium bis(2-ethylhexyl)-sulfosuccinate) via the chemical reduction of metal salt $(HAuCl_4,\AgNO_3,\Cu(NO_3)_2)$ by sodium borohydride. For the alloy nanocluster, several samples were prepared by changing the molar ratio of Au/Cu, Au/Ag alloy nanocluster, 3:1, 1:1, 1:3. The alloy nanoclusters were characterized by UV-Visible spectrophotometer, TEM(Transmission Electron Microscope), and XPS(X-ray Photoelectron Spectrometer). With the change of the mole ratio of the alloy component, the wavelengths of the surface plasmon absorption shift linearly from 520 nm of the pure Au nanocluster to 570 nm of the pure Cu nanocluster for Au/Cu alloy nanoclusters and from 405 nm to 520 nm for Au/Ag alloy nanoclusters. The chemical shifts of the Au4f, Ag3d, Cu2p XPS peaks were observed with changing the molar ratio of the alloy element. The alloy nanoclusters in chloroform solution were made uniformly in size and colloidally stable for long periods of time. These results indicate that the method here is a very effective method for synthesizing hydrophobic alloy nanoclusters with uniform or nearly uniform particle size distribution.

Keywords

Au/Ag;Au/Cu;Alloy Nanocluster

References

  1. E. J. Heilweil; R. M. Hochestrasser, J. Chem. Phys., 1985, 82, 4762. https://doi.org/10.1021/j100366a016
  2. F. Hache; D. Richard; C. Flytzanis; K. Kreibig, Appl. Phys. A, 1988, 47, 347. https://doi.org/10.1007/BF00615498
  3. T. Dutton; B. Van Woneterghem; S. Saltiel; N. V. Chestony; P. M. Rentzepis; T. P. Shen; D. Rogovin, J. Phys. Chem., 1990, 94, 1100. https://doi.org/10.1063/1.448693
  4. M. J. Bloemer; J. W. Haus; P. R. Ashley, J. Opt. Soc. Am. B, 1990, 7, 790. https://doi.org/10.1364/JOSAB.7.000790
  5. R. F. Haglund; Jr. L. Yang; R. H. Magruder III; J. E. Witting; K. Berker; R. A. Zuhr, Opt. Lett., 1993, 18, 373. https://doi.org/10.1063/1.116628
  6. K. Kadono; T. Sakaguchi; M. Miya; J. Matsuoka; T. Fukumi, J. Mater. Sci.: Mater. Electron, 1993, 4, 59. https://doi.org/10.1021/jp962685o
  7. T. S. Ahmadi; S. L. Logunov; M. A. El-Sayed, J. Phys. Chem., 1996, 100, 8053. https://doi.org/10.1021/jp960484e
  8. M. M. Alvarez; J. T. Khoury; T. G. Schaaff; N. M. Shafigullin; I. Vezmar; R. L. Whetten, J. Phys. Chem., 1997, 101, 3706. https://doi.org/10.1063/1.361018
  9. S. L. Logunov; T. S. Ahmadi; M. A. El-Sayed; J. T. Khoury; R. L. Whetten, J. Phys. Chem. B, 1997, 101, 3713. https://doi.org/10.1021/jp962923f
  10. I. Tanahashi; Y. Manabe; T. Tohda; S. Sasaki; A. Nakamura, Appl. Phys., 1996, 79, 1244. https://doi.org/10.1364/OL.10.000511
  11. G. L. Hornyak; C. J. Patrissi; C. R. Martin, J. Phys. Chem. B, 1997, 101, 1548. https://doi.org/10.1364/JOSAB.7.000790
  12. G. De; L. Tapfer; M. Catalano; G. Battaglin; F. Caccavale; F. Gonella; P. Mazzoldi; R. F. Jr. Haglund, Appl. Phys. Lett., 1996, 68, 3820. https://doi.org/10.1002/anie.199522401
  13. H. B. Liao; R. F. Xiao; J. S. Fu; P. Yu; G. K. L. Wong; S. Ping, Appl. Phys. Chem., 1997, 70, 1.
  14. D. Richard; P. Roussignol; C. Flytzanis, Opt. Lett., 1985, 10, 511. https://doi.org/10.1364/OL.18.000373
  15. M. T. Reetz; S. A. Quaiser, Angew. Chem., 1995, 34(20), 2240. https://doi.org/10.1002/anie.199522401
  16. I. Lisiecki; M. P. Pileni, J. Am. Chem. Soc., 1993, 115, 3887. https://doi.org/10.1021/ja00063a006
  17. P. Mulvaney; M. Giersig;A. Henglein, J. Phys. Chem., 1992, 96, 10419. https://doi.org/10.1007/BF01386895
  18. P. Barnickel; A. Wokaun; W. Sagerand; H. F. Eiche, J. Colloid Interface Sci., 1992, 148, 80. https://doi.org/10.1007/BF01387459
  19. R. Lamber; S. Wetjen; G. Schulz-Ekloff; A. Baalmann, J. Phys. Chem., 1995, 99, 13834. https://doi.org/10.1103/PhysRevLett.81.1905
  20. P. Mulvaney, Langmuir, 1996, 12, 788. https://doi.org/10.1021/la960462j
  21. J. Marignier; J. Balloni; M. Delcourt; J. Chevalier, Nature, 1985, 317, 344. https://doi.org/10.1021/la960150g
  22. L. M. Liz-Marzan; Luis; A. P. Philipse, J. Phys. Chem., 1995, 41, 15120. https://doi.org/10.1039/ft9918703881
  23. A. Henglein; M. Giersig, J. Phys. Chem., 1994, 98, 6931. https://doi.org/10.1021/j100079a008
  24. J. A. Creighton; D. G. Eadon, J. Chem. Soc. Faraday Trans., 1991, 87, 3881. https://doi.org/10.1039/ft9918703881
  25. C. Fan; L. Jiang, Langmuir, 1997, 13, 3059. https://doi.org/10.1038/317344a0
  26. C. Sangregorsio, P. Bagliou, Langmuir, 1996, 12, 5800. https://doi.org/10.1021/la9502711
  27. J. S. Faulkner; Y. Wang; G. M. Stocks, Phys. Lett., 1998, 81, 1905. https://doi.org/10.1021/j100038a014
  28. K. Ripken, Z. Phys., 1972, 250, 228. https://doi.org/10.1007/BF01387459
  29. M. Schluter, Z. Phys., 1972, 250, 87. https://doi.org/10.1016/0021-9797(92)90116-4
  30. G. C. Papavassiliou, J. Phys. F: Met. Phys., 1976, 6, 2103. https://doi.org/10.1021/j100204a056
  31. J. Am. Chem. Soc. v.115 I. Lisiecki;M. P. Pileni https://doi.org/10.1021/ja00063a006