DOI QR코드

DOI QR Code

Spectroscopic Study on Three States of Water in the Reverse Micelle Using Methylene Blue as a Probe

Methylene Blue를 이용한 역미셀에서 물의 세 가지 상태에 대한 분광학적 연구

  • Bum Young Park (Department of Chemistry, Kunsan National University) ;
  • Kab Sang Jung (Department of Chemistry, Kunsan National University) ;
  • Soo-Chang Yu (Department of Chemistry, Kunsan National University) ;
  • Ho Seob Choi (Department of Chemistry, Kunsan National University)
  • 박범영 (군산대학교 자연과학대학 화학과) ;
  • 정갑상 (군산대학교 자연과학대학 화학과) ;
  • 유수창 (군산대학교 자연과학대학 화학과) ;
  • 최호섭 (군산대학교 자연과학대학 화학과)
  • Published : 2003.08.20

Abstract

In order to find out the microscopic environmental information on the nonionic reverse micelle of Triton X-100/n-hexanol/water in cyclohexane, an absorption and fluorescence spectroscopic study has been conducted using a methylene blue(MB). The information on the microscopic states of water in the polar core of the reverse micelle has been found by investigating complex formation and solvatochromic behavior between MB and Triton X-100. As a result, it was found that there exist three states in the polar core of the reverse micelle. The measured values of $W(=[H_2O]/[Surf])$ for the three states of water are 0.71, 4.98, and 7.26, and the corresponding lifetimes of MB are $15.45 ns{\pm}0.56$, $12.27 ns{\pm}0.79$, and $8.28 ns{\pm}0.82$, respectively.

Keywords

MB, Triton X-100;Absorption;Fluorescence;Reverse Micelle;Fluorescence Lifetime

References

  1. Elias, S.; Panagiotis, L. Langmuir. 2000, 16, 2398. https://doi.org/10.1021/la9701642
  2. Stathatos, E.; Lianos, P.; Monte, F. D.; Levy, D.; Tsiourvas, D. Langmuir. 1997, 13, 4295. https://doi.org/10.1006/jcis.2001.8097
  3. Dutta, P.; Fendler, J. H. J. Colloid Interface Sci. 2002,247, 47. https://doi.org/10.1006/jcis.2001.8097
  4. Altamirano, M. S.; Borsarelli, C. D.; Cosa, J. J.; Previtali, C. M. J. Colloid Interface Sci. 1998, 205, 390. https://doi.org/10.1006/jcis.1999.6513
  5. Rodriguez, R.; Vargas, S.; Fernandez-Velasco, D. A. J. Colloid Interface Sci. 1998, 197, 21-28. https://doi.org/10.1021/ac00024a024
  6. Fernandez-Velasco, D. A.; Rodriguez, R.; Vargas, S.; Tuena de Gomez-Puyou, M.; Gomez-Puyou, A. J. Colloid Interface Sci. 1998, 197, 29-35. https://doi.org/10.1006/jcis.1997.5203
  7. Chen, D. H.; Wang, C. C.; Huang, T. C. J. Colloid Interface Sci. 1999, 210, 123. https://doi.org/10.1016/S0039-9140(98)00299-9
  8. Qi, L.; Ma, J. J. Colloid Interface Sci. 1998, 197, 36. https://doi.org/10.1016/S0039-9140(98)00012-5
  9. Kumar, C.; Balasubramanian, D. J. Colloid Interface Sci. 1980, 74, 1. https://doi.org/10.1016/0039-9140(93)E0033-A
  10. Kumar, C.; Balasubramanian, D. J. Colloid Interface Sci. 1979, 69, 271. https://doi.org/10.1006/bbrc.1996.0243
  11. Das, S. K.; Ganguly, B. N. J. Colloid Interface Sci. 1997, 192, 184. https://doi.org/10.1006/jcis.1997.5006
  12. Guharay, J.; Sengupta, P. K. Biochem. Biophys. Res. Commun. 1996, 219, 388. https://doi.org/10.1016/0021-9797(79)90155-3
  13. Mwalupindi, A. G.; Rideau, A.; Agbaria, R. A.; Warner, I. M. Talanta. 1994, 41, 599. https://doi.org/10.1016/0021-9797(80)90164-2
  14. Tarazi, L.; George, A.; Patonay, G.; Strekowski, L. Talanta. 1998, 46, 1413. https://doi.org/10.1006/jcis.1997.5228
  15. Evans, L.; Patonay, G. Talanta. 1999, 48, 933. https://doi.org/10.1006/jcis.1998.5795
  16. Sophianopoulos, A. J.; Lipowski, J.; Narayanan, N.; Patonay, G. Appl. Spectrose. 1997, 51, 1551. https://doi.org/10.1006/jcis.1997.5203
  17. Zen, J. M.; Patonay, G. Anal. Chem. 1991, 63, 2934. https://doi.org/10.1006/jcis.1997.5202
  18. Jacobs, K. Y.; Schoonheydt, R. A. J. Colloid Interface Sci. 1999, 220, 103. https://doi.org/10.1006/jcis.1998.5650
  19. Ho-Soeb, Choi; Heung-Tu, Kim J. Kor. Chem. Soc.,. 1996, 40(4), 283. https://doi.org/10.1021/la981783t