DOI QR코드

DOI QR Code

A Study on PTC/NTC Behavior of Fluorinated Carbon Black-filled HDPE Matrix Compounds

불소처리된 카본블랙을 충전한 HDPE 기지 컴파운드의 PTC/NTC 특성에 관한 연구

  • Soo-Jin Park (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Su-Wan Song (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Min-Kang Seo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jae-Sup Shin (Department of Chemisty, Chungbuk National University) ;
  • Kyuchul Kim (Shinwha Intertek Co.)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 송수완 (한국화학연구원 화학소재연구부) ;
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 신재섭 (충북대학교 화학과) ;
  • 김규철 (신화인터텍)
  • Published : 2003.04.20

Abstract

In this study, the fluorinated carbon blacks(CB) were used to reduce the negative temperature coefficient (NTC) phenomenon of the CB-filled high density polyethylene(HDPE) compounds in the fluorination pressure of 0.1-0.4 MPa. The changes in surface properties of the CB were investigated by using FT-IR, XPS and contact angle measurements. From the FT-IR results, the fluorinated CB showed the C-F absorption peak at 1400-1000 cm$^{-1}$ and the peak intensity was increased with increasing the fluorination pressure. Also, the analysis of XPS spectra of the fluorinated CB indicated that fluorine content was increased with increasing the fluorination pressure. Meanwhile, the surface free energy of the fluorinated CB was decreased with increasing the fluorination pressure. Consequently, the increase of fluorine contents on CB made a disappearance of NTC behaviors of CB/HDPE compounds, which was probably due to the reduction of CB reaggregation after melting point of the HDPE, resulting from decreasing the surface free energy of CB particles.

Keywords

Negative Temperature Coefficient(NTC);Fluorination;Surface Free Energy;Reaggregation

References

  1. Norman, R.H. Conductive Rubber and Plastics; Elsevier:Amsterdam, 1970.
  2. Carmona, F.; Mouney, C. J. Mater. Sci. 1992, 27, 1322. https://doi.org/10.1002/pen.760311608
  3. Harpaz, M.; Narkis, M. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 1415. https://doi.org/10.1002/pen.760300806
  4. Doh, C. H.; Moon, S. I.; Kim, W. S. Bull. Korean Chem. Soc. 1996, 17, 861. https://doi.org/10.1002/pen.760350802
  5. Donnet, J. B.; Bansal, R. C.; Wang, M. J. Carbon Black; Marcel Dekker: New York,1993. https://doi.org/10.1063/1.1661934
  6. Choi, S. S.; Kim, I. S. Bull. Korean Chem. Soc. 1998,19, 174. https://doi.org/10.1002/app.1984.070290518
  7. Yang, G. Polym. Compo. 1997, 18, 484. https://doi.org/10.1006/jcis.2001.7788
  8. Park, S. J.; Kim, H. C.; Kim, H. Y. J. Colloid Interface Sci. 2002, 255, 145. https://doi.org/10.1006/jcis.2000.7160
  9. Sircar, A. K.; Wells, J. L. Polym. Eng. Sci. 1981, 21,809. https://doi.org/10.1002/pen.760211302
  10. Wessling, B. Polym. Eng. Sci. 1991, 31, 1200. https://doi.org/10.1006/jcis.2001.7920
  11. Yacubowicz, J.; Narkis, M.; Benguigui, L. Polym. Eng. Sci. 1990, 30, 459. https://doi.org/10.1002/app.1191
  12. Chen, X. B.; Devaux, J.; Issi, J-P.; Billaud, D. Polym. Eng. Sci. 1995, 35, 637. https://doi.org/10.1007/BF01142046
  13. Bueche, F. J. Appl. Phys. 1973, 44, 532. https://doi.org/10.1063/1.1661934
  14. Narkis, M.; Vaxman, A. J. Appl. Polym. Sci. 1984, 29,1639. https://doi.org/10.1016/S0022-1139(00)82829-8
  15. Park, S. J.; Jin, J. S. J. Colloid Interface Sci. 2001, 242,174. https://doi.org/10.1016/S0022-1139(00)82824-9
  16. Park, S. J.; Kim, J. S. J. Colloid Interface Sci. 2000,232, 311. https://doi.org/10.1006/jcat.1997.1649
  17. Park, S. J. In Interfacial Forces and Fields: Theory and Application; Hsu, J. P., Ed.; Marcel Dekker: New York, 1999. https://doi.org/10.1016/S0022-1139(00)82900-0
  18. Park, S. J.; Kim, J. S. J. Colloid Interface Sci. 2001,244, 336. https://doi.org/10.1016/S0022-1139(97)00029-8
  19. Wu, G. Z.; Zhang, C.; Miura, T. D. S.; Asai, S. G.; Sumita, M. S. J. Appl. Polym. Sci. 2001, 80, 1063. https://doi.org/10.1002/app.1191
  20. Watanabe, N.; Nakajima, T.; Touhara, H. Graphite Fluorides;Elsevier: Amsterdam, 1998.
  21. Chong, Y. B.; Ohara, H. J. Fluorine Chem. 1992, 57, 169. https://doi.org/10.1002/(SICI)1097-0126(199710)44:2<117::AID-PI811>3.0.CO;2-L
  22. Takasima, M.; Fukami, S.; Nosaka, Y.; Unish, T. J. Fluorine Chem. 1992, 57, 131. https://doi.org/10.1016/S0022-1139(00)82824-9
  23. Panev, A. G.; Gruber, V.; Fripiat, J. J. J. Catal. 1997,168, 321. https://doi.org/10.1002/polb.1113
  24. Hayes, L. J. J. Fluorine Chem. 1976, 8, 69. https://doi.org/10.1016/S0022-1139(00)82900-0
  25. Bismarck, A.; Tahhan, R.; Springer, J.; Schuls, A.; Klapötke, T. M.; Zell, H.; Michaeli, W. J. Fluorine Chem.1997, 84, 127. https://doi.org/10.1016/S0022-1139(97)00029-8
  26. Wu, S. Polymer Interface and Adhesion; Marcel Dekker:New York, 1982.
  27. van Oss, C. J. Interfacial Forces in Aqueous Media;Marcel Dekker: New York, 1994. https://doi.org/10.1002/pc.10300
  28. Yi, X.; Wu, G.; Pan, Y. Polym. Intern. 1997, 44, 117. https://doi.org/10.1006/jcis.2002.8481
  29. Fowkes, F. M. In Physico-Chemical Aspects of Polymer Surfaces; Mittal, K. L., Ed.; Plenum: New York, 1983. https://doi.org/10.1002/pen.760211302