DOI QR코드

DOI QR Code

The Influence of Dielectric Constant on Ionic and Non-polar Interactions

  • Hwang, Kae-Jung (Bioinformatics & Molecular Design Technology Inovation Center) ;
  • Nam, Ky-Youb (Bioinformatics & Molecular Design Technology Inovation Center) ;
  • Kim, Jung-Sup (Bioinformatics & Molecular Design Technology Inovation Center) ;
  • Cho, Kwang-Hwi (Baker Laboratory of Chemistry and Chemical Biology, Cornell University) ;
  • Kong, Seong-Gon (Department of Electrical Engineering, Soongsil University) ;
  • No, Kyoung-Tai (Bioinformatics & Molecular Design Technology Inovation Center)
  • Published : 2003.01.20

Abstract

This work is focused on analyzing ion-pair interactions and showing the effect of solvent induced inter-atomic attractions in various dielectric environments. To estimate the stability of ion-pairs, SCI-PCM ab initio MO calculations were carried out. We show that the solvent-induced attraction or ‘cavitation' energy of the ion-pair interactions in solution that arises mainly from the stabilization of the water molecules by the generation of an electrostatic field. In fact, even the strong electrostatic interaction characteristic of ion-pair interactions in the gas phase cannot overcome the destabilization or reorganization of the water molecules around solute cavities that arise from cancellation of the electrostatic field. The solvent environment, possibly supplemented by some specific solvent molecules, may help place the solute molecule in a cavity whose surroundings are characterized by an infinite polarizable dielectric medium. This behavior suggests that hydrophobic residues at a protein surface could easily contact the side chains of other nearby residues through the solvent environment, instead of by direct intra-molecular interactions.

References

  1. Perutz, M. F. Science 1978, 201, 1187. https://doi.org/10.1126/science.694508
  2. Warshel, A. Acc. Chem. Res. 1981, 14, 284. https://doi.org/10.1021/ar00069a004
  3. Schultz, P. G. Acc. Chem. Res. 1989, 22, 287. https://doi.org/10.1021/ar00164a005
  4. Arnold, E.; Vriend, G.; Luo, M.; Griffith, J. P.; Kamer, G.;Erickson, J. W.; Johnson, J. E.; Rossmann, M. G. Acta Crystallogr.A 1987, 43, 346. https://doi.org/10.1107/S0108767387099306
  5. Sheriff, S.; Silverton, E. W.; Padlan, E. A.; Cohen, G. H.; Smith-Gill, S. J.; Finzel, B. C.; Davies, D. R. Proc. Natl. Acad. Sci. U. S.A. 1987, 84, 8075. https://doi.org/10.1073/pnas.84.22.8075
  6. Gao, J.; Boudon, S.; Wipff, G. J. Am. Chem. Soc. 1991, 113, 9610. https://doi.org/10.1021/ja00025a028
  7. Singh, J.; Thornton, J. M. Atlas of Protein Side-Chain Interactions; IRL Press: Oxford, UK, 1992.
  8. Magalhaes, A.; Maigret, B.; Hoflack, J.; Gomes, J. N. F.;Scheraga, H. A. J. Protein Chem. 1994, 13, 195. https://doi.org/10.1007/BF01891978
  9. No, K. T.; Nam, K. Y.; Scheraga, H. A. J. Am. Chem. Soc. 1997,119, 12917. https://doi.org/10.1021/ja971260s
  10. Cho, K. H.; No, K. T.; Scheraga, H. A. J. Phys. Chem. A 2000,104, 6505. https://doi.org/10.1021/jp000341z
  11. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111,2507. https://doi.org/10.1021/ja00189a023
  12. Jorgensen, W. L.; Buckner, J. K.; Huston, S. E.; Rossky, P. J. J.Am. Chem. Soc. 1987, 109, 1891. https://doi.org/10.1021/ja00241a001
  13. Boudon, S.; Wipff, G.; Maigret, B. J. Phys. Chem. 1990, 94, 6056. https://doi.org/10.1021/j100378a078
  14. Magalhas, A.; Maigret, B.; Hoflack, J.; Gomes, J. N. F.; Scheraga,H. A. J. Protein Chem. 1994, 13, 195. https://doi.org/10.1007/BF01891978
  15. Hendsch, Z.; Tidor, B. Protein Sci. 1994, 3, 211.
  16. Koshi, J. M.; Goldstein, R. A. Proteins 1997, 27, 336. https://doi.org/10.1002/(SICI)1097-0134(199703)27:3<336::AID-PROT2>3.0.CO;2-B
  17. Pratt, R. L.; A. Pohorille, A. Proc. Natl. Acad. Sci. USA 1992, 89,2995. https://doi.org/10.1073/pnas.89.7.2995
  18. Pangali, C.; Rao, M.; Berne, B. J. J. Chem. Phys. 1979, 71, 2975. https://doi.org/10.1063/1.438701
  19. Pohorille, J. P.; Pratt, L. R. J. Am .Chem. Soc. 1990, 112, 5066. https://doi.org/10.1021/ja00169a011
  20. Tobias, D. J.; Brooks, C. L. J. Chem. Phys. 1990, 92, 2582. https://doi.org/10.1063/1.457951
  21. Wallqvist, A.; Covell, D. G. Biophys. J. 1996, 71, 600. https://doi.org/10.1016/S0006-3495(96)79260-3
  22. Vila, J. A.; Ripoll, D. R.; Villegas, M. E.; Vorobjev, Y. N.;Scheraga, H. A. Biophys. J. 1998, 75, 2637. https://doi.org/10.1016/S0006-3495(98)77709-4
  23. Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.;. Frisch,M. J. J. Phys. Chem. 1996, 100, 16098. https://doi.org/10.1021/jp960488j
  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.;Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.;Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.;Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley,J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.;Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh,PA, 1995.
  25. Nam, K.-Y.; Yoon, J. H.; No, K. T. Chem. Phys. Lett. 2000, 319,391. https://doi.org/10.1016/S0009-2614(00)00084-1
  26. Simonson, T.; Brunger, T. A. J. Phys. Chem. 1994, 98, 4683. https://doi.org/10.1021/j100068a033
  27. Eisenhabor, F.; Argos, P. Protein Eng. 1996, 9, 1121. https://doi.org/10.1093/protein/9.12.1121
  28. Wynn, R.; Harkins, P. C.; Richards, F. M.; Fox, R. O. Protein Sci.1997, 6, 1621. https://doi.org/10.1002/pro.5560060803

Cited by

  1. Effect of Solvents on the Adsorption Properties of Benzo[α]pyrene-imprinted Polymers vol.28, pp.1, 2010, https://doi.org/10.1260/0263-6174.28.1.79
  2. One-step direct synthesis of layered double hydroxide single-layer nanosheets vol.7, pp.21, 2015, https://doi.org/10.1039/C5NR01077B