DOI QR코드

DOI QR Code

Effect of Cationic Initiator Content on Electron-beam Curing of Difunctional Epoxy Resin

양이온 개시제 함량이 2관능성 에폭시 수지의 Electron-beam 경화에 미치는 효과

  • Published : 2003.06.20

Abstract

In this work, the effect of cationic initiator content on the electron-beam (EB) curing process of diglycidylether of bisphenol-A (DGEBA) resin was studied using near-infrared spectroscopy (NIRS), thermogravimetric analysis (TGA), and critical stress intensity factor $(K_{IC})$. Benzylquinoxalinium hexafluoroantimonate (BQH) were used as an initiator and its content was varied from 0.5 to 3 phr. NIRS measurements showed that the hydroxyl group of EB-cured epoxy resin was increased with increasing the BQH content. Thermal stability and $K_{IC}$ value of EB-cured epoxy resin were increased with increasing the BQH content but were decreased above 2 phr content. These results could be attributed to the decrease of the conversion and degree of crosslinking. In another word, the conversion and degree of crosslinking were restricted by the incomplete network structure from high reactivity at the BQH content above 2 phr, resulting in decreasings of thermal stability and $K_{IC}$.

Keywords

Electron-Beam; Epoxy; Cationic Initiator; Thermal Stability; $K_{IC}$

References

  1. Glauser, T.; Johansson, M.; Hult, A. Macromol. Mater.Eng., 2000, 274, 20. https://doi.org/10.1002/(SICI)1439-2054(20000101)274:1<20::AID-MAME20>3.0.CO;2-E
  2. Park, S. J.; Kim, T. J.; Lee, J. R. J. Polym. Sci. Polym.Phys., 2000, 38, 2114. https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  3. Park, S. J.; Seo, M. K.; Lee, J. R.; Lee, D. R. J. Polym.Sci. Polym. Chem., 2001, 39, 187. https://doi.org/10.1002/1099-0518(20010101)39:1<187::AID-POLA210>3.0.CO;2-H
  4. Toneri, T.; Sanda, F.; T. Endo, Macromolecules, 2001,34, 1518. https://doi.org/10.1021/ma000759v
  5. Sundell, P. E. Cationic Pol Vinyl Ethers using Iodoniumand Sulfonium Salts, Ph. D. Thesis, Royal Institute ofTechnology, Stockholm 1990.
  6. Finzel, M. C.; Delong, J.; Hawley, M. C. J. Polym. Sci.Polym. Chem., 1995, 33, 673. https://doi.org/10.1002/pola.1995.080330409
  7. Xu, L.; Schlup, J. R. J Appl. Polym. Sci., 1998, 67, 895. https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<895::AID-APP15>3.0.CO;2-N
  8. Li, F. M..; Bao, J. W..; Chen, X. B.; Bao, H. Y.; Wang,H. L. Radiat. Phys. Chem., 2002, 63, 557. https://doi.org/10.1016/S0969-806X(01)00620-X
  9. Glauser, T.; Johansson, M.; Hult, A. Macromol. Mater.Eng., 2000, 274, 25. https://doi.org/10.1002/(SICI)1439-2054(20000101)274:1<25::AID-MAME25>3.0.CO;2-L
  10. Zheng, S.; Wang, J.; Guo, Q.; Wei, J.; Li, J. Polymer,1996, 37, 4667. https://doi.org/10.1016/S0032-3861(96)00324-2
  11. Crivello, J. V. J. Polym. Sci., Polym. Chem., 1999, 37,4241. https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4241::AID-POLA1>3.0.CO;2-R
  12. Yagci, Y. Reetz, I. Prog. Polym. Sci., 1998, 23, 1485. https://doi.org/10.1016/S0079-6700(98)00010-0
  13. Mehnert, R.; Pincus, A.; Janorsky, I.; Stowe, R.; Berejka,A. UV & EB curing Technology & Equipment, 2nd Ed.; Johm Willey & Son, London, 1998.
  14. Crivello, J. V.; Walton, T. C.; Malik, R. Chem. Mater.,1997, 9, 1273. https://doi.org/10.1021/cm9700312
  15. Park, S. J.; Kim, H. C.; Lee, H. Y.; Suh, D. H. Macromolecules,2001, 34, 7573. https://doi.org/10.1021/ma010792x
  16. Peterson, R. E. Stress Concentration Factors, WilleyInterscience, New York (1974).
  17. Takahashi, E.; Sanda, F.; Endo, T. J. Polym. Sci. Polym. Chem., 2002, 40, 1037. https://doi.org/10.1002/pola.10186
  18. Kwak, G. H.; Park, S. J.; Lee, J. R. J. Polym. Appl.Polym. Sci., 2000, 78, 290. https://doi.org/10.1002/1097-4628(20001010)78:2<290::AID-APP80>3.0.CO;2-9
  19. Park, S. J.; Kim, H. C. J. Polym. Sci. Polym. Phys.,2001, 39, 121. https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  20. Rabeik, J. F. Mechanisms of Photophysical Processesand Photochemical Reactions in Polymers, John Wiley& Sons, New York, 1987.
  21. Wei, H.; Lu, Y.; Shi, W.; Yuan, H.; Chen, Y. J. Appl.Polym. Sci., 2001, 80, 51. https://doi.org/10.1002/1097-4628(20010404)80:1<51::AID-APP1074>3.0.CO;2-W
  22. Lopata, V. J.; Saunders, C. B.; Singh, A.; Janke, C. J.;Wrenn, G. E.; Havens, S. J. Radiat. Phys. Chem., 1999,56, 405. https://doi.org/10.1016/S0969-806X(99)00330-8

Cited by

  1. Conductivities and curing properties of electron-beam-irradiated anisotropic conductive films vol.61, pp.2, 2012, https://doi.org/10.3938/jkps.61.282
  2. Thermogravimetric and Fourier-transform infrared analyses on the cure behavior of polycardanol containing epoxy groups cured by electron beam vol.132, pp.10, 2015, https://doi.org/10.1002/app.41599
  3. Contact resistance properties of electron-beam-cured anisotropic conductive films vol.63, pp.7, 2013, https://doi.org/10.3938/jkps.63.1477
  4. Electron beam curing of acrylated epoxy resins for anisotropic conductive film application vol.547, 2013, https://doi.org/10.1016/j.tsf.2013.01.065
  5. Effects of the electron-beam absorption dose on the glass transition, thermal expansion, dynamic mechanical properties, and water uptake of polycardanol containing epoxy groups cured by an electron beam vol.132, pp.39, 2015, https://doi.org/10.1002/app.42570