DOI QR코드

DOI QR Code

DFT Studies on Hydrogen Bonding in Water Complexes of Amino-substituted Pyridine

아미노 치환 피리딘-물 착화합물의 수소결합에 대한 DFT 연구

  • Gab-Yong Lee (Department of Chemistry, Catholic Univeristy of Daegu) ;
  • Ok-Ju Kim (Department of Chemistry, Catholic Univeristy of Daegu)
  • 이갑용 (대구가톨릭 대학교 자연대학 화학과) ;
  • 김옥주 (대구가톨릭 대학교 자연대학 화학과)
  • Published : 2003.04.20

Abstract

Density Functional Theory(DFT) calculations are performed to estimate the hydrogen bonding interaction energies in pyridine-water and amino-substituted pyridine-water complexes. Some equilibrium properties are also obtained for these complexes at B3LYP/aug-cc-pVDZ level. It is shown that the amino substitution increases the proton affinity of pyridine and stabilizes the hydrogen bond. The degree of stabilization upon formation of the complex varies with the number and the position of the amino groups.

Keywords

Amino-Substituted Pyridine-Water Complex;Hydrogen Bond;DFT Calculation

References

  1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A. Montgomery, J. A.; Raghavachari, H.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, Y.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, F.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Gaussian, Inc.; Pittsburgh PA, 1995.
  2. Andon, R. J. L.; Cox, J. D. J. Chem. Soc. 1952, 4601. https://doi.org/10.1039/jr9520004601
  3. Cox, J. D. J. Chem. Soc. 1952, 4606. https://doi.org/10.1039/jr9520004606
  4. Abe, J.; Nakanishi, K.; Touhara, H. J. Chem. Thermodyn. 1978, 10, 483. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  5. Marczak, W.; Giera, E. J. Chem. Thermodyn. 1988, 30, 241 https://doi.org/10.1063/1.479130
  6. Garland, C. W.; Nishigaki, K. J. Chem. Phys. 1976, 65,5298. https://doi.org/10.1063/1.464304
  7. Narayanan, T.; Prafulla, B. V.; Kumar, A.; Gopal, E. S. R. Ber. Bunsen-Ges. Phy. Chem. 1991, 95, 12. https://doi.org/10.1021/jp980708o
  8. Schneider, G. Z. Phys. Chem. Neue Folge. 1963, 37, 333. https://doi.org/10.1021/j100027a005
  9. Almasy, L.; Cser, L.; Jancso, G. Physica B, 2000, 276-278, 446. https://doi.org/10.1063/1.1329889
  10. Jeffrey, G. A. An Introduction to Hydrogen Bonding;Oxford University Press; New York, 1997.
  11. Scheiner, S. Hydrogen Bonding; Oxford University Press; New York, 1997. https://doi.org/10.1021/jp973142x
  12. Halgren, T. A. J. Comput. Chem. 1996, 17, 520. https://doi.org/10.1021/j100043a023
  13. Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe. K. J. Chem. Phys. 1999, 110, 11906. https://doi.org/10.1039/jr9520004606
  14. Becke, A. D. J Chem. Phys. 1993, 98, 1372. https://doi.org/10.1063/1.464304
  15. Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. A 1998, 102, 3782. https://doi.org/10.1021/jp980708o
  16. Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705. https://doi.org/10.1021/jp973142x
  17. Elstner, M.; Hobza, P.; Franenheim, T.; Suhai. S.; Kaxiras, E. J. Chem. Phys. 2001, 114, 5149. https://doi.org/10.1021/jp981259v
  18. Kieninger, M.; Suhai, S. J. Comput. Chem. 1996, 117,1508. https://doi.org/10.1021/jp981900t
  19. Lozynski, M.; Rusinska-Roszak, D. J, Phys. Chem. A1998, 102, 2899. https://doi.org/10.1021/jp982713y
  20. Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837. https://doi.org/10.1021/jp020059n
  21. Adamo, C,; Barone, V. In Recent Advances in Density Functional Methods; Chong, D. P., Ed.; World Scientific: Singapore, 1997: Part III.
  22. Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. In Theoretical Treatments of Hydrogen Bonding; Hadzi, D., Ed.; Wiley: Chichester, 1997.
  23. Lozynski, M.; Rusiuska-Roszak, D.; Mack, H. G. J. Phys. Chem. A 1998, 102, 2899. https://doi.org/10.1021/jp973142x
  24. Chandra, A. K.; Nguyen, M. T.; Zeegers-Huyskens, T.J. Phys. Chem. A 1998, 102, 6010. https://doi.org/10.1016/0021-9614(78)90096-4
  25. Mo, O.; Janez, M. J. Phys. Chem. A 1998, 102, 8174. https://doi.org/10.1021/jp981900t
  26. Gu, J.; Leszczynski, J. J. Phys. Chem. A 1998, 103,2744. https://doi.org/10.1021/ja00299a024
  27. Niu, H.; Alexander, D. Mackerell, Jr. J. Phys. Chem. A2002, 106, 7820. https://doi.org/10.1021/jp020059n
  28. Kohn, W.; Sham, L. J Phys. Rev. 1965, A140, 1133. https://doi.org/10.1080/00268977000101561
  29. Atkins, P. W.; Friedman, R. S. Molecular Qunaturm Mechanics, Oxford Univ. Press; New York, 1997.
  30. Sahn, V., Density Functional Theory III., Springer: New York, 1996. https://doi.org/10.1016/0022-2860(74)85074-X
  31. Ostlund, N. HyperChem, Autodesk, Inc., Sausalito, CA, 1993. https://doi.org/10.1021/jp952944u
  32. Dewar, M. J. S.; Zoebish, E. J.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/jp994094e
  33. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1016/0022-2852(66)90139-1
  34. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am, Chem. Soc. 1985, 108, 3902.
  35. Sorensen, G. O.; Mahler, L.; Rastrup-Andersen, N. J. Mol. Struct. 1974, 20, 119. https://doi.org/10.1080/00387018008064043
  36. Wang, J.; Johnson, B. G.; Boyd, R. J.; Eriksson, L. K.J. Phys. Chem. 1996, 100, 6317. https://doi.org/10.1080/00268979500101161
  37. Papai I.; Gabor, J. J. Phys. Chem. A 2000, 104, 2132. https://doi.org/10.1080/00268979500101171
  38. Reed. A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev.1988, 99, 899. https://doi.org/10.1021/jp981501y
  39. Takahashi, H.; Mamola, K.; Plyler, E. K. J. Mol. Spectrosc.1966, 21, 217. https://doi.org/10.1021/ja00852a002
  40. Kasende, O.; Zeegers-Huyskens, Th. Spectrosc. Lett.1980, 13, 493. https://doi.org/10.1016/0166-1280(89)85163-2
  41. Zoidis, E.; Yarwood, J.; Danten, Y.; Besnard, M.Mol. Phys. 1995, 85, 373. https://doi.org/10.1021/j100091a024
  42. Zoidis, E.; Yarwood, J.; Danten, Y.; Besnard, M. Mol. Phys. 1995, 85, 385. https://doi.org/10.1021/jp021519f
  43. Samanta, U.; Chakrabarti, P.; Chandrasekhar, J. J. Phys. Chem. A 1998, 102, 8964. https://doi.org/10.1063/1.433030
  44. Del Bene, J. E. J. Am. Chem. Soc. 1975, 97, 5330. https://doi.org/10.1021/ja00852a002
  45. Alagona, G.; Ghio, C.; Nagy, P. J. Mol. Struct. (THEOCHEM).1989, 187, 219. https://doi.org/10.1016/0166-1280(89)85163-2
  46. Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089. https://doi.org/10.1016/S0921-4526(99)01658-0
  47. Ahn, D. S.; Park, S. W.; Lee, S.; Kim, B. J. Phys. Chem. A. 2003, 107, 131. https://doi.org/10.1021/jp021519f

Cited by

  1. Water and alcohol(s): what's the difference? A proton NMR and DFT study of hetero-association with pyridine vol.21, pp.6, 2008, https://doi.org/10.1002/poc.1351