DOI QR코드

DOI QR Code

Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl·2H2O

  • Pu Su Zhao (Materials Chemistry Laboratory, Nanjing University of Science and Technology) ;
  • Lu De Lu (Materials Chemistry Laboratory, Nanjing University of Science and Technology) ;
  • Fang Fang Jian (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology)
  • Published : 2003.08.20

Abstract

The crystal structure of $[Co(phen)_2(Cl)(H_2O)] Clㆍ2H_2O$(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P1, with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)${\AA}$ ${\alpha}$=64.02(1), ${\beta}$=86.364(9), ${\gamma}=78.58(2)^°$, and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33${\AA}$). The intermolecular hydrogen bonds connect the $[Co(phen)_2(Cl)(H_2O)]1+,\;H_2O$ moieties and chloride ion.

Keywords

Cobalt Complexes;1,10-Phenanthroline Ligands;Hydrogen Bonds;Network

References

  1. Barton, J. K. Science 1986, 233, 727. https://doi.org/10.1126/science.3016894
  2. Naing, K.; Takashani, M.; Taniguchi, M.; Yamagishi, A. Inorg. Chem. 1995, 34, 350. https://doi.org/10.1021/ic00105a054
  3. Sammes, P. C.; Yahioglu, G. Chem. Soc. Rev. 1994, 327. https://doi.org/10.1016/S0277-5387(96)00557-8
  4. Arounaguiri, S.; Maiya, B. G. Inorg. Chem. 1996, 35, 4267. https://doi.org/10.1021/ja00180a018
  5. Martell, A. E.; Harris, W. R. J. Mol. Catal. 1980, 7, 99. https://doi.org/10.1016/0304-5102(80)85009-7
  6. Harris, W. R.; Bess, R. C.; Martell, A. E.; Ridgway, T. H. J. Am. Chem. Soc. 1977, 99, 2958. https://doi.org/10.1021/ja00451a018
  7. Harris, W. R.; Martell, A. E. J. Coord. Chem. 1980, 10, 107. https://doi.org/10.1021/ic00140a028
  8. MacKenzie, E. D. J. Chem. Soc. A 1969, 1655. https://doi.org/10.1021/ic00062a003
  9. Bogucki, R. E.; Melendon, G.; Martell, A. E. J. Am. Chem. Soc. 1976, 98, 3202. https://doi.org/10.1021/ja00427a024
  10. Gillard, R. D. J. Chem. Soc. A 1967, 917. https://doi.org/10.1039/j19670000917
  11. Yasui, T. Bull. Chem. Soc. Jpn. 1975, 48, 454. https://doi.org/10.1246/bcsj.48.454
  12. Ablov, A. V. Russ. J. Inorg. Chem. 1961, 6, 1112.
  13. Ye, B. H.; Zeng, T. X.; Han, P.; Ji, L. N. Zhongshan Daxue Xuebao 1994, 33(8), 52. https://doi.org/10.1016/S0277-5387(00)81501-6
  14. Sheldrick, G. M. Actc Cryst., Sect. A 1969, 46, 467. https://doi.org/10.1126/science.3016894
  15. Sheldrick, G. M. SHELXTL5, The Complete Software Package for Single Crystal Structure Determination, Siemens, AG, Analytical Systems Aut37, D76181 Karlsruhe 21, Germany (1995).
  16. Sheldrick, G. M. SHELXTL93, Program for Crystal Structure refinement, University of Gottingen, Germany (1993). https://doi.org/10.1021/ic9508684
  17. Wilson, A. J. International Table for X-ray Crystallography, volume C, 1992; Kluwer Academic Publishers, Dordrecht: Tables 6.1.1.4 (pp. 500-5502) and 4.2.6.8 (pp. 219-222) https://doi.org/10.1080/00958978008079857
  18. Ye, B. H.; Chen, X. M.; Zeng, T. X.; Ji, L. N. Polyhedron, 1994, 13, 2185. https://doi.org/10.1039/j19670000917
  19. Kom, Y. Koord. Khim. 1982, 8, 225.
  20. Mccpad, A. A.; Ablov, A. V. Dokl. Acad. Nauk. SSSR 1966, 167, 1251.
  21. Shi, X. H.; You, X. Z.; Li, C.; Xiong, R. G.; Yu, K. B. Transition Met. Chem. 1995, 20, 191.
  22. Gou, S. H.; You, X. Z.; Yu, K. B.; Lu, J. P. Inorg. Chem. 1993, 32, 1883. https://doi.org/10.1246/bcsj.48.454
  23. Guild, B. C.; Hayden, T.; Brennan, T. F. Cryst. Struct. Commun. 1980, 9, 371. https://doi.org/10.1021/ja00427a024
  24. Niederhaffer, E. C.; Martell, A. E.; Rudolf, P.; Clearfield, A. Inorg. Chem. 1982, 21, 3734. https://doi.org/10.1039/j19690001655
  25. McAulife, C. A.; Pritchard, R. G.; Bermejo, M. R.; Garcia-Vazquez, A.; Macias, A.; Romero, J.; Sousa, A. Acta Cryst. 1992, C48, 1841. https://doi.org/10.1021/ja00451a018
  26. Tian, Y. P.; Duan, C. Y.; Xu, X. X.; You, X. Z. Acta Cryst. 1995, C51, 2309. https://doi.org/10.1016/0304-5102(80)85009-7
  27. Pang, L.; Lucken, E. A. C.; Bernardinelli, G. J. Am. Chem. Soc. 1990, 112, 8754. https://doi.org/10.1021/ja00180a018
  28. Xiong, R. G.; Liu, C. M.; Zuo, J. L.; Li, H. Z.; You, X. Z.; Fun, H. K.; Sivakumar, K. Polyhedron, 1997, 16, 2315. https://doi.org/10.1021/ic00105a054

Cited by

  1. Influence of Zeolite Framework on the Structure, Properties, and Reactivity of Cobalt Phenanthroline Complex: A Combined Experimental and Computational Study vol.115, pp.19, 2011, https://doi.org/10.1021/jp2003672
  2. Sensitive DNA biosensor improved by 1,10-phenanthroline cobalt complex as indicator based on the electrode modified by gold nanoparticles and graphene vol.176, 2013, https://doi.org/10.1016/j.snb.2012.08.085
  3. Studies on the Interaction Mechanism of 1,10-Phenanthroline Cobalt(II) Complex with DNA and Preparation of Electrochemical DNA Biosensor vol.6, pp.10, 2006, https://doi.org/10.3390/s6101234
  4. Reactivity of boron cluster anions [B10H10]2−, [B10Cl10]2− and [B12H12]2− in cobalt(II)/cobalt(III) complexation with 1,10-phenanthroline vol.428, 2015, https://doi.org/10.1016/j.ica.2014.12.029