DOI QR코드

DOI QR Code

Theoretical Study of the Isotope Effect for the Reaction Cl+HD at the High Energy Using Pairwise Energy Model

Pairwise Energy Model을 이용한 높은 충돌에너지에서 Cl+HD 반응의 동위원소 효과에 대한 이론적 연구

  • Published : 2003.06.20

Abstract

The pairwise energy model (PEM) assumes that the cross section for the reaction cross section for the reaction A+BC$\{leftrightarrow}$B+C, where B and C are isotopes of hydrogen, depends on only the pairwise relative energy Es between A and B. Until now, the PEM has been used to interpret theoretically the isotope effect for the reactions such as $O(^3P)+HD,\;Ar^++(H_2,\;D_2,and\;HD)$. In this paper we carry out extensive quasiclassical trajectory calculations for the three possible reactions $Cl+H_2$ and HD and show that the PEM works very well at high energy. In particular we are able to accurately predict the intramolecular isotope effect at high energy for the reaction of Cl+HD using only the cross section data for $Cl+H_2$. To understand that the PEM works so well at high energy, the internal energy distributions for the products are examined. The distributions for three reactions are different at a fixed relative collision energy E but are approximately same at a fixed pairwise energy Es. This suggests that the PEM works very well at high energy. We believe the conclusions reached here will apply to other A+BC systems.

Keywords

Pairwise Energy;Isotope Effect

References

  1. Song J. B.; Gislason E. A. J. Chem. Phys. 1993, 99,5117. https://doi.org/10.1063/1.466013
  2. Song J. B.; Gislason E. A.; Sizun M. J. Chem. Phys.1995, 102, 4885. https://doi.org/10.1063/1.469536
  3. Song J. B.; Gislason E. A. J. Phys. Chem. 1996, 100,195. https://doi.org/10.1021/jp9520052
  4. Sizun M.; Gislason E. A.; Parlant G. Chem. Phys.1986, 107, 311. https://doi.org/10.1016/0301-0104(86)85010-8
  5. Gislason E. A.; Sizun M. Chem. Phys. 1989, 133, 237. https://doi.org/10.1016/0301-0104(89)80204-6
  6. Light J. C. Discuss. Faraday Soc. 1967, 44, 14. https://doi.org/10.1039/df9674400014
  7. Suplinskas R. J. J. Chem. Phys. 1968, 49, 5046. https://doi.org/10.1063/1.1669997
  8. Malcolme-Laws D. J. Radiochim. Acta. 1979, 26, 71.
  9. Gonzalez M.; Aguilar A.; Gilibert M. Chem. Phys.1989, 131, 347. https://doi.org/10.1016/0301-0104(89)80181-8
  10. Gillen K. T.; Mahan B. H.; Winn J. S. Chem. Phys.Lett. 1973, 22, 344. https://doi.org/10.1016/0009-2614(73)80108-3
  11. Glenewinkel-Meyer T.; Hoppe U.; Kowalski A.;Ottinger C.; Rabenda D. Int. J. Mass Spectrom. IonProcesses 1995, 144, 167. https://doi.org/10.1016/0168-1176(95)04161-D
  12. Song J. B.; Gislason E. A. Chem. Phys. Lett. 1996, 259, 91. https://doi.org/10.1016/0009-2614(96)00732-4
  13. Kosmas A.; Gislason E. A.; Jorgensen A. D. J. Chem.Phys. 1981, 75, 2884. https://doi.org/10.1063/1.442362
  14. Riederer D. E.; Jorgensen A. D.; Gislason E. A. J.Chem. Phys. 1991, 94, 5980. https://doi.org/10.1063/1.460733
  15. Connally C. M.; Gislason E. A. Chem. Phys. Letters1972, 14, 103. https://doi.org/10.1016/0009-2614(72)87154-9
  16. Song J. B.; Gislason E. A. J. Chem. Phys. 1995, 103,8884. https://doi.org/10.1063/1.470077
  17. Gonzalez M.; Gilibert M.; Aguilar A.; Sayos R. J.Chem. Phys. 1993, 98, 2927. https://doi.org/10.1063/1.464120
  18. Gislason E. A.; Mahan B. H.; Tsao C. W.; Werner A.S. J. Chem. Phys. 1969, 50, 142. https://doi.org/10.1063/1.1670772
  19. Hase W. L.; Duchovic R. J.; Hu H.; Lim K. F.; Lu D.H.; Swany K. N.; VandelLinde S. R.; Wolf R. J.VENUS, obtained directly from Professor Hase.
  20. Budenhozer F. E.; Hu S. C.; Jeng D. C.; Gislason E. A.J. Chem. Phys. 1988, 89, 1958. https://doi.org/10.1063/1.455094
  21. Song J. B.; Gislason E. A. Chem. Phys. 1996, 202, 1. https://doi.org/10.1016/0301-0104(95)00285-5
  22. Dong K.; Gislason E. A.; Sizun M. Chem. Phys. 1994,189, 143.
  23. Bookin D.; Constantine C. A.; Root J. W; MuckermanJ. T. Chem. Phys. Lett. 1983, 101, 23. https://doi.org/10.1016/0009-2614(83)80298-X
  24. Lin K. C.; CotterR. J.; Koski W. S. J. Chem. Phys.1974, 61, 905. https://doi.org/10.1063/1.1682033
  25. Song J. B. Chem. Phys. 2002, 285, 255. https://doi.org/10.1016/S0301-0104(02)00834-0
  26. Song J. B.; Gislason E. A. Chem. Phys. 1997, 214, 23. https://doi.org/10.1016/S0301-0104(96)00297-2
  27. Hu H.; Hase W. L.; Pirraglia T. J. Comput. Chem.1991, 12, 1014. https://doi.org/10.1002/jcc.540120814
  28. Hillenbrand E. A.; Main D. .J.; Jorgensen A. D.; GislasonE. A. J. Phys. Chem. 1984, 88, 1358. https://doi.org/10.1021/j150651a024
  29. Song J. B.; Gislason E. A. Chem. Phys. 1998, 237, 159. https://doi.org/10.1016/S0301-0104(98)00205-5
  30. Bhalla K. C.; Sathyamurthy N. Chem. Phys. Lett. 1989,160, 437. https://doi.org/10.1016/0009-2614(89)87623-7
  31. Sizun M.; Parlant G.; Gislason E. A. Chem. Phys. Lett.1987, 139, 1. https://doi.org/10.1016/0009-2614(87)80140-9
  32. Malcolme-Laws, D. J. Chem. Phys. 1972, 57, 5522.
  33. Henglein A.; Lacmann K.; Knoll B. J. Chem. Phys.1965, 43, 1048. https://doi.org/10.1063/1.1696817
  34. Light J. C.; Lin J. J. Chem. Phys. 1965, 43, 3209. https://doi.org/10.1063/1.1697295
  35. Wright J. S.; Gray S. K.; Porter R. N. J. Phys. Chem.1979, 83, 1033. https://doi.org/10.1021/j100471a028
  36. Gentry W. R.; Gislason E. A.; Mahan B. H.; Tsao C.W. J. Chem. Phys. 1968, 49, 3058. https://doi.org/10.1063/1.1670549
  37. Dressler R. A.; Salter R. H.; Murad E. J. Chem. Phys.1993, 99, 1159. https://doi.org/10.1063/1.465413
  38. Gislason E. A.; Sizun M. Chem. Phys. Lett. 1989, 158,102. https://doi.org/10.1016/0009-2614(89)87301-4
  39. Kendall G. M. J. Chem. Phys. 1973, 58, 3523. https://doi.org/10.1063/1.1679686
  40. Georgiadis R.; Armentrout P. B. J. Phys. Chem. 1988,92, 7060. https://doi.org/10.1021/j100336a008
  41. Schultz R. H.; Armentrout P. B. J. Chem. Phys. 1993,99, 1159. https://doi.org/10.1063/1.465413
  42. Yuan J. M.; Micha D. A. J. Chem. Phys. 1976, 64, 1032. https://doi.org/10.1063/1.432312
  43. Armentrout P. B. Int. Rev. Phys. Chem. 1990, 9, 115. https://doi.org/10.1080/01442359009353244
  44. Truhlar D. G.; Dixon D. A. In Atom-molecule collisiontheory; ed. Bernstein R. B.; Plenum: New York, 1979;p. 595.
  45. Gislason E. A.; Sizun M. J. Phys. Chem. 1991, 95,8462. https://doi.org/10.1021/j100175a013
  46. Muckerman J. T. In Theoretical Chemistry; Vol. 6A, ed.Henderson D.; Academic Press: New York, 1981; p. 1.
  47. Malcolme-Laws D. J. J. Chem. Soc. Faraday Trans. 1972, 268, 1613.
  48. Malcolme-Laws D. J. J. Chem. Soc. Faraday Trans. 1975, 71, 1183. https://doi.org/10.1039/f29757101183
  49. Fayeton J. A.; Brenot J; Durup-Ferguson C. M.; BaratM. Chem. Phys. 1989, 133, 259. https://doi.org/10.1016/0301-0104(89)80206-X
  50. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1986, 85, 6380. https://doi.org/10.1063/1.451469
  51. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1989,90, 118. https://doi.org/10.1063/1.456516
  52. Hershbach D. R. Appl. Opt. Suppl. 1965, 2, 128.
  53. Song J. B.; Gislason E. A. Chem. Phys. 1996, 212, 259. https://doi.org/10.1016/S0301-0104(96)00229-7
  54. Sizun M.; Parlant G.; Gislason E. A. Chem. Phys. 1989, 133, 251. https://doi.org/10.1016/0301-0104(89)80205-8
  55. Sizun M.; Gislason E. A. J. Chem. Phys. 1989, 91, 4603. https://doi.org/10.1063/1.456750
  56. Baer M.; Amiel S. J . Am. Chem. Soc. 1969, 91, 6547. https://doi.org/10.1021/ja01052a001
  57. Armentrout P. B. In Isotope Effects in Gas-PhaseChemistry; ed. Kaye J. A.; ACS Symposium #502: Washington,1992; p. 194.
  58. Chiang M. M.; Mahan B. H.; Maltz C. J. Chem. Phys.1972, 57, 5114. https://doi.org/10.1063/1.1678197
  59. Song J. B.; Gislason E. A. J. Chem. Phys. 1996, 104,5834. https://doi.org/10.1063/1.471314
  60. Light J. C.; Chan S. J. Chem. Phys. 1969, 51, 1008. https://doi.org/10.1063/1.1672098
  61. Muckerman J. T. J. Chem. Phys. 1972, 57, 3388. https://doi.org/10.1063/1.1678770
  62. Gillen K. T.; Mahan G. H.; Winn J. S. J. Chem. Phys.1973, 59, 6380. https://doi.org/10.1063/1.1680017
  63. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1989,84, 4862. https://doi.org/10.1063/1.449975
  64. Stowe G. F.; Schultz R. H.; Wright C. A.; ArmentroutP. B. Int. J. Mass Spectrom. Ion Processes 1990, 100,177. https://doi.org/10.1016/0168-1176(90)85075-D
  65. George T. F.; Suplinkas R. J. J. Chem. Phys. 1971, 54,1046. https://doi.org/10.1063/1.1674936
  66. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1987, 86, 6420.
  67. Persky A. J. Chem. Phys. 1977, 66, 2832.