DOI QR코드

DOI QR Code

Raman Spectroscopy Study on the Adsorption Orientation of Biphenylcarboxlic Acid Derivatives

라만 분광법을 이용한 Biphenylcarboxylic Acid 유도체들의 흡착 배향 연구

  • Heay Ran Choi (Department of Chemistry, Kunsan National University) ;
  • Kyu Seok Choi (Department of Chemistry, Kunsan National University) ;
  • Il Ki Jung (Department of Chemistry, Kunsan National University) ;
  • Hong Seok Song (Department of Chemistry, Kunsan National University) ;
  • Keun Ok Han (Department of Chemistry, Kunsan National University) ;
  • Ho Seob Choi (Department of Chemistry, Kunsan National University) ;
  • Sang Hee Lee (Department of Chemistry, Kunsan National University) ;
  • Soo-Chang Yu (Department of Chemistry, Kunsan National University)
  • 최혜란 (군산대학교 자연과학대학 화학과) ;
  • 최규석 (군산대학교 자연과학대학 화학과) ;
  • 정일기 (군산대학교 자연과학대학 화학과) ;
  • 송홍석 (군산대학교 자연과학대학 화학과) ;
  • 한건옥 (군산대학교 자연과학대학 화학과) ;
  • 최호섭 (군산대학교 자연과학대학 화학과) ;
  • 이상희 (군산대학교 자연과학대학 화학과) ;
  • 유수창 (군산대학교 자연과학대학 화학과)
  • Published : 2003.10.20

Abstract

Surface-enhanced Raman(SER) spectroscopy was utilized to investigate the adorption orientation of the 4-biphenylcarboxylic acid(BPCA) derivatives, such as 4'-cyano-BPCA(c-BPCA), 4'-mercapto-BPCA(m-BPCA), and 4'-amino-BPCA(a-BPCA), which were adsorbed on Au and Ag colloid monolayers. For the systematic approach, information regarding the adsorption behavior of benzoic acid, biphenyl, and BPCA was applied to the target molecules. From the spectral behaviors of benzene ring, C-H stretching, carboxylate anion, and the other finger printing vibrational modes, it was concluded that only the m-BPCA was adsorbed tilt with thiol group being adsorbed on Au surface, whereas the other molecules were adsorbed flat on both Au and Ag surfaces.

Keywords

SERS;Monolayer,;BPCA;Adsorption Orientation;Au;Ag

References

  1. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550. https://doi.org/10.1126/science.286.5444.1550
  2. Fleischman, M.; Hendra, P. J.; Mcquillan, A. Chem. Phys. Lett. 1974, 26, 163. https://doi.org/10.1016/0009-2614(74)85388-1
  3. Nie, S.; Emory, S. R. Science 1997, 275, 110.
  4. Adlkofer, K.; Eck, W.; Grunze, M.; Tanaka, M. J. Phys. Chem. B. 2003, 107, 7.
  5. Joo, S. W.; Chung, T. D.; Jang, W.; Gong, M.-S.;Geum, N.; Kim, K. Langmuir 2002, 18, 8813. https://doi.org/10.1021/la020003k
  6. Lu, Y.; Xue, G. Polymer 1993, 34, 3750. https://doi.org/10.1016/0032-3861(93)90067-K
  7. Kang J. F.: Ulman, A.; Liao, S.; Jordan R. Langmuir, 1999, 15, 2095. https://doi.org/10.1021/la9813883
  8. Huheey, J. E.; Inorganic Chemistry: Principles of Structure and Reactivity. Harper & Row: New York, 1978; pp. 276-288.
  9. Williams, J.; Haq, S.; Raval, R. Surf. Sci. 1996, 368, 303. https://doi.org/10.1016/S0039-6028(96)01067-9
  10. Ulman, A. Acc. Chem. Res. 2001, 34, 855. https://doi.org/10.1021/ar0001564
  11. Laibinis, P. E.; Hickman, J. J.; Qrighton, M. S.; Whitesides, G. M. Science 1989, 245, 845. https://doi.org/10.1126/science.245.4920.845
  12. Barrow, S. M.; Kitching, K. J.; Haq, S.; Richardson, N. V. Surf. Sci. 1998, 401, 322. https://doi.org/10.1016/S0039-6028(97)01086-8
  13. Park, H.; Lee, S. B.; Kim, K.; Kim, M. S. J. Phys. Chem. 1990, 94, 7576. https://doi.org/10.1021/j100382a049
  14. Moskovits, M. J. Chem. Phys. 1992, 77, 4408. https://doi.org/10.1063/1.444442
  15. Right, R. M.; Walter, D. G.; Musik, M.D.; Jackson, M.A.; Allison, J.; Natan. M. J. Langmuir 1996, 12, 810. https://doi.org/10.1021/la950429h
  16. Heister, K.; Rong, H.-T.; Buck, M.; Zharnikov, M; Grunze, M.; Johansson, L. S. O. J. Phys. Chem. B. 2001, 105, 6888. https://doi.org/10.1021/jp010180e
  17. Bubert, H.; Jenett, H. Surface and thin film analysis,Wiley-VCH.: Weinheim 2002.
  18. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan,I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997,78, 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  19. Zhuravel, M. A.; Nguyen, S. T. Tetrahedron Lett. 2001, 42, 7925. https://doi.org/10.1016/S0040-4039(01)01674-4
  20. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735. https://doi.org/10.1021/ac00100a008
  21. Michaels, A. M.; Nirmal, M.; Brus, L. E. J. Am. Chem.Soc. 1999, 121, 9932. https://doi.org/10.1021/ja992128q
  22. Boerio, F. J.; Hong, P. P.; Tsai, H. W.; Young, J. T. Surface and interface analysis. 1991, 17, 448. https://doi.org/10.1002/sia.740170707
  23. Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Wiley; NewYork, 1978, pp. 267-387.
  24. Yu, K. H.; Rhee, J. M.; Lee, Y.; Lee, K.; Yu, S.-C. Langmuir 2001, 17, 52. https://doi.org/10.1021/la000589f
  25. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1984, 88, 5526. https://doi.org/10.1021/j150667a013
  26. 하창식, 화학세계 2000, 141, 64.
  27. Bumm, L. A. et al. Science 1996, 271, 1705. https://doi.org/10.1126/science.271.5256.1705
  28. Yu, K. H.; Rhee, J. J.; Ko, S.; Yu, S. C. Langmuir 2001,17, 8184. https://doi.org/10.1021/la010863l
  29. Gao, P.; Weaver, M. J. J. Phys. Chem. 1985, 89, 5040. https://doi.org/10.1021/j100269a031

Cited by

  1. The Fluorescence Study of the Induced Adsorption Orientation of Biphenyl Derivatives on Au Colloidal Surface vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1637
  2. The Fluorescence Study on the Inducing Orientation of 4-Biphenyl Acetonitrile Adsorbed on Metal Colloids vol.53, pp.4, 2009, https://doi.org/10.5012/jkcs.2009.53.4.399