DOI QR코드

DOI QR Code

Ab Initio Quantum Mechanical Studies of 1,2-, 1,3-Dioxetanes and 1,3-Cyclodisiloxane; Energetics, Molecular Structures, Vibrational Frequencies

1,2-, 1,3-dioxetanes, 그리고 1,3-cyclodisiloxane의 분자구조, 에너지와 진동주파수에 대한 순 이론 양자 역학적 연구

  • 최근식 (한남대학교 이과대학 화학과) ;
  • 김승준 (한남대학교 이과대학 화학과)
  • Published : 2003.08.20

Abstract

The geometrical parameters, vibrational frequencies, and relative energies for 1,2-, 1,3-dioxetanes, and 1,3-cyclodisiloxane have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The geometries have been optimized at the self-consistent field(SCF), the single and double excitation configuration interaction(CISD), the coupled cluster with single and double excitation(CCSD), and the CCSD with connected triple excitations[CCSD(T)] levels of theory. The highest level of theory employed in this study is TZ2P CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization energies for 1,2- and 1,3-isomers.

Keywords

Dioxetane;Cyclodisiloxane;Ab Initio;Aldehyde;Silanone

References

  1. Lay, T. H.; Yamada, T.; Tsai, P-L.; Bozzelli, J. W.; J. Phys. Chem. A., 1997, 101, 2471. https://doi.org/10.1021/jp9629497
  2. Adam, W.; Baader, W. J.; J. Am. Chem. Soc., 1985, 107, 410. https://doi.org/10.1021/ja00522a001
  3. Dewar, M. J. S.; Thiel, W.; J. Am. Chem. Soc., 1975, 97, 3978. https://doi.org/10.1002/qua.560190511
  4. Harding, L. B.; Goddard III, W. A.; J. Am. Chem. Soc., 1980, 102, 439. https://doi.org/10.1016/0009-2614(81)85260-8
  5. Hilal, R.; Int. J. Quantum Chem., 1981, 19, 805. https://doi.org/10.1002/jcc.540040406
  6. Yamaguchi, K.; Yabushita, S.; Fueno, T.; Chem. Phys. Lett., 1981, 78, 572. https://doi.org/10.1021/ja00354a014
  7. Hotokka, M.; Roos, B.; Siegbahn, P.; J. Am. Chem. Soc., 1983, 105, 5263. https://doi.org/10.1021/ja00847a018
  8. Chen, C.-C.; Fox, M. A.; J. Comput. Chem., 1983, 4, 488. https://doi.org/10.1021/ja00288a022
  9. Richardson, W. H.; J. Org. Chem., 1989, 54, 4677. https://doi.org/10.1021/jo00280a041
  10. Dorofeeva, O. V.; Thermochimica Acta, 1992, 194, 9. https://doi.org/10.1016/0040-6031(92)80002-E
  11. Lay, T. H.; Bozzelli, W.; Chemical Physics Letters., 1997, 268, 175. https://doi.org/10.1021/ja9935714
  12. Zharinova, E. V.; Voloshin, A. I.; Kazakov, V. P.; J. Mol. Liqiuids., 2001, 91, 237. https://doi.org/10.1126/science.284.5415.788
  13. Skancke, P. N.; Fogarasi, G.; Boggs, J. E.; J. Mol. Struct, 1980, 62, 259. https://doi.org/10.1021/ja00315a077
  14. Kudo, T.; Nagase, S.; J. Am. Chem. Soc., 1985, 107, 2589. https://doi.org/10.1016/S0009-2614(01)00568-1
  15. Kumar, P. N. V. P.; Wang, D.-X.; Lam, B.; Albright, T. A.; Jemmis, E.l D.; J. Mol. Struct., 1989, 194, 183. https://doi.org/10.1016/S0020-1693(99)00474-0
  16. Liang, C.; Allen, L. C.; J. Am Chem. Soc., 1991, 113, 1878. https://doi.org/10.1006/jmsp.1996.0048
  17. Huzinaga, S.; J. Chem. Phys., 1965, 42, 1293. https://doi.org/10.1063/1.1696113
  18. Dunning, T. H.; J. Chem. Phys., 1970, 53, 2823. https://doi.org/10.1021/jo00280a041
  19. Dunning, T. H.; J. Chem. Phys., 1971, 51, 716. https://doi.org/10.1016/0040-6031(92)80002-E
  20. Pulay, P.; In Modern Theoretical Chemistry, Schaefer, H. F.; Plenum, Ed.; New York, 1977, 4, 153.
  21. Goddard, J. D.; Handy, N. C.; Schaefer, H. F.; J. Chem. Phys., 1979, 71, 1525. https://doi.org/10.1063/1.1674408
  22. Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi, Y.; Schaefer, H. F.; J. Chem. Phys., 1980, 72, 4652. https://doi.org/10.1021/ja00006a002
  23. Yamaguchi, Y.; Osamura, Y.; Goddard, J. D.; Schaefer III, H. F.; A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory, (Oxfod University Press, New York, 1994). https://doi.org/10.1063/1.1696113
  24. Scheiner, A. C.; Scuseria, G. E.; Rice, J. E.; Lee, T. J.: Schaefer, H. F. J. Chem. Phys. 1987, 87, 5361. https://doi.org/10.1016/0022-2860(89)80080-8
  25. Scuseria, G. E.; Chem. Phys. Lett., 1991, 176, 27. https://doi.org/10.1021/ja00295a003
  26. Saxe, P.; Yamaguchi, Y.; Schaefer, H. F.; J. Chem. Phys. 1987, 77, 5647. https://doi.org/10.1016/0022-2860(80)85242-2
  27. Streitwieser, A.;Heathcock, C. H.; Kosower, E. M.; Introduction to Organic Chemistry; Macmillan Pub., New York, U. S. A., 1992. https://doi.org/10.1016/S0009-2614(97)00168-1
  28. Bogey, M.; Delcroix, B.; Walters, A.; Guillemin, J.-C.; J. Molecular Spectroscopy, 1996, 175, 421-428. https://doi.org/10.1006/jmsp.1996.0048
  29. PSI 2.0.8: Janssen, C. L.; Seidl, E. T.; Scuseria, G. E.; Hamilton, T. P.; Yamaguchi, Y.; Remingtion, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Rermann, J. T.; Allen, W. D.; Brocks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M.; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F.; PSITECH Inc. Watkinssvills, GA.U.S.A. 1994. https://doi.org/10.1016/S0167-7322(01)00168-4
  30. Demartin, F.; Biagioli, M.; Strinna-Erre, L.; Panzanelli, Angelo.; Micera, G.; Inorganica Chimica Acta., 2000, 299, 123-127. https://doi.org/10.1063/1.453655
  31. Sanz, M. E.; Sanz, V. M.; Lopez, J. C.; Alonso, J. L.; Chem. Phys. Lett., 2001, 342, 31-38. https://doi.org/10.1063/1.439707
  32. Fink, M. J.; Haller, K. J.; West, R.; Michl, J.; J. Am Chem. Soc., 1984, 106, 822. https://doi.org/10.1016/0009-2614(91)90005-T
  33. Serra, S.; Cavazzoni, C.; Chiarotti, G. L.; Scandolo, S.; Tosatti, E.; Science, 1999, 284, 788. https://doi.org/10.1063/1.438494
  34. Frapper, G.; Saillard, J.-Y.; J. Am Chem. Soc., 2000, 122, 5367. https://doi.org/10.1021/ja9935714

Cited by

  1. Interplay of thermochemistry and Structural Chemistry, the journal (Volume 25, 2014, Issues 3–4) and the discipline vol.26, pp.3, 2015, https://doi.org/10.1007/s11224-015-0584-x