Effect of Dietary Glutamine Supplement on Performance and Intestinal Morphology of Weaned Pigs

  • Lee, Der-Nan (Department of Animal Science, National I-Lan University) ;
  • Cheng, Yeong-Hsiang (Department of Animal Science, National I-Lan University) ;
  • Wu, Fu-Yu (Department of Animal Science, National I-Lan University) ;
  • Sato, Hiroyuki (Laboratory of Amino Acid Application Product Development Department, Amino-Science Laboratories, Ajinomoto Co., Inc.) ;
  • Shinzato, Izuru (Laboratory of Amino Acid Application Product Development Department, Amino-Science Laboratories, Ajinomoto Co., Inc.) ;
  • Chen, Shih-Ping (Animal Technology Institute Taiwan, Chunan, Miaoli 350, ROC.) ;
  • Yen, Houng-Ta (Animal Technology Institute Taiwan, Chunan, Miaoli 350, ROC.)
  • Received : 2002.10.09
  • Accepted : 2003.06.26
  • Published : 2003.12.01


Two experiments were conducted to investigate the effect of dietary glutamine (Gln) supplement on the performance and villus morphology of weaned pigs. In Exp. 1, 48 pigs were fed diets supplemented with 0, 0.5, 1.0, or 1.5% Gln for 28 days. Dietary Gln supplemented levels did not influence performance and plasma Gln concentration of weaned pigs. In Exp. 2, 48 weaned pigs were fed the same treatment diets of Exp. 1 for 7 or 14 days. Dietary Gln supplement reduced the ratio of small intestine weight to empty carcass weight at d 14 postweaning. However, the villus height and villus height/crypt depth ratio at the duodenum were increased. IgA and protein in the bile from d 7 and d 14 postweaning were higher in the pigs fed the diet supplemented with 0.5% Gln. Plasma IgA concentration was not influenced by dietary Gln levels. In conclusion, dietary Gln supplement might benefit the development of the small intestine and bile IgA production in weaned pigs.


Glutamine;Weaned Pigs;Intestinal Morphology;Performance


  1. Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51:215-236.
  2. Rhoads, J. M., E. O. Keku, L. E. Bennett, J. Quinn and J. G. Lecce. 1990. Development of L-glutamine-stimulated electroneutral sodium absorption in piglet jejunum. Am. J. Physiol. 259: G99-107.
  3. Souba, W. W., K. Herskowitz, R. M. Salloum, M. K. Chen and T. R. Austgen. 1990. Gut glutamine metabolism. J. Parenter. Enter. Nutr. 14:45S-50S.
  4. Szondy, Z. and E. A. Newsholme. 1989. The effect of glutamine concentration on the activity of carbamoyl-phosphate synthase II and on the incorporation of [3H] thymidine into DNA in rat mesenteric lymphocytes stimulated by phytohaemagglutinin. Biochem. J. 261:979-983.
  5. Wu, G. and D. A. Knabe. 1994. Free and protein-bound amino acids in sow’s colostrum and milk. J. Nutr. 124:415-424.
  6. Stoll, B., D. G. Burrin, J. Henry, H. Yu, F. Jahoor and P. J. Reeds. 1998. Dietary amino acids are the preferential source of hepatic protein synthesis in piglets. J. Nutr. 128:1517-1524.
  7. Lee, D. N., Y. H. Cheng, B. J. Chen, I. T. Yu, C. W. Liao and H. T. Yen. 2002. Effect of dietary glutamine supplementation on the growth performance and immune response of early weaned piglets. J. Chin. Soc. Anim. Sci. 31: 99-110.
  8. Madej, M., T. Lundh and J. E. Lindberg. 1999. Activities of enzymes involved in glutamine metabolism in connection with energy production in the gastrointestinal tract epithelium of newborn, sucking and weaned piglets. Biol. Neonate 75:250-258.
  9. Yoo, S. S., C. J. Field and M. I. McBurney. 1997. Glutamine supplementation maintains intramuscular glutamine concentrations and normalizes lymphocyte function in infected early weaned pigs. J. Nutr. 127:2253-2259.
  10. Alverdy, J. C. 1990. Effects of glutamine-supplemented diets on immunology of the gut. J. Parenter. Enter. Nutr. 14:109S-113S.
  11. Souba, W. W. and T. R. Austgen. 1990. Interorgan glutamine flow following surgery and infection. J. Parenter. Enter. Nutr. 14:90S-93S.
  12. Lund, P. 1983. L-glutamine and L-glutamate. 3th edn. Methods of Enzymatic Analysis Vol XIII. pp. 357-376.
  13. National Research Council. 1998. Nutrient Requirements of Swine. 10th Ed. National Academy Press, Washington, DC.
  14. Dugan, M. E. R., D. A. Knabe and G. Wu. 1994. Glutamine and glucose metabolism in intraepithelial lymphocytes from preand postweaning pigs. Comp. Biochem. Physiol. 109B: 675-681.
  15. Hampson, D. J. 1986. Attempts to modify changes in the piglet small intestine after weaning. Res. Vet. Sci. 40:313-317.
  16. Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, H. R. Gaskins and M. W. A. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131:1520-1527.
  17. Dunsford, B. R., D. A. Knabe and W. E. Haensly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1863.
  18. Lee, D. N., C. F. Weng, Y. H. Cheng, T. Y. Kuo, J. F. Wu and H. T. Yen. 2003. Dietary glutamine supplementation enhances weaned pigs mitogen-induced lymphocyte proliferation. Asian-Aust. J. Anim. Sci. 16:1182-1187.
  19. Pluske, J. R., I. H. Williams and F. X. Aherne. 1996. Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci. 62:131-144.
  20. Windmueller, H. G. and A. E. Spaeth. 1980. Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. J. Biol. Chem. 255:107-112.
  21. Liu, T., J. Peng, Y. Xiong, S. Zhou and X. Cheng. 2002. Effects of dietary glutamine and glutamate supplementation on small intestinal structure, active absorption and DNA, RNA concentrations in skeletal muscle tissue of weaned piglets during d 28 to 42 of age. Asian-Aust. J. Anim. Sci. 15:238-242.
  22. Arndt, H., F. Kullmann, F. Reub, J. Scholmerich and K. D. Palitzsch. 1999. Glutamine attenuates leukocyte-endothelial cell adhesion in indomethacin-induced intestinal inflammation in the rat. J. Parenter. Enter. Nutr. 23:12-18.
  23. Wu, G., D. A. Knabe, W. Yan and N. E. Flynn. 1995. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am. J. Physiol. 268:R334-342.
  24. Krebs, H. 1980. Glutamine metabolism in the animal body. In: Glutamine: Metabolism, Enzymology and Regulation (Ed. J. Mora and R. Palacios). Academic Press, New York. pp. 319-329.
  25. Wu, G. 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128:1249-1252.
  26. Lackeyram, D., X. Yue and M. Z. Fan. 2001. Effects of dietary supplementation of crystalline L-glutamine on the gastrointestinal tract and whole body growth in early-weaned pigs fed corn and soybean meal-based. J. Anim. Sci. 79 (Supp. 1): 322 (Abstr.).
  27. SAS Institute Inc. 1999. SAS/STAT User’s Guide: Release 6.12th edn. SAS Institute Inc., Cary, North Carolina.
  28. Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43.
  29. Burke, D. J., J. A. Alverdy and E. Aoys. 1989. Glutaminesupplemented total parenteral nutrition improves gut immune function. Arch. Surg. 124:2396-2399.
  30. Miller, B. G., P. S. James, M. W. Smith and F. J. Bourne. 1986. Effects of weaning on the capacity of pig intestine villi to digest and absorb nutrients. J. Agric. Sci. 107:579-585.
  31. Kitt, S. J., P. S. Miller, A. J. Lewis and R. L. Fischer. 2002. Effects of glutamine on growth performance and small intestine villus height in weanling pigs. Nebraska Agriculture Experiment Station Swine Report, 2002, pp. 29-32.
  32. Wu, G., S. A. Meier and D. A. Knabe. 1996. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 126:2578-2584.
  33. Ayonrinde, A. I., I. H. Williams, R. McCauley and B. P. Mullan. 1995. Reduced plasma concentrations of glutamine and its metabolites in weaned pigs. In: Manipulating Pig Production V (Ed. D. P. Hennessy and P. D. Cranwell). Australasian Pig Science Association, Werribee, Australia. p. 179.

Cited by

  1. Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets pp.1869-1889, 2018,