DOI QR코드

DOI QR Code

Optimization of the Growth Rate of Probiotics in Fermented Milk Using Genetic Algorithms and Sequential Quadratic Programming Techniques

Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen

  • Received : 2002.10.21
  • Accepted : 2003.02.17
  • Published : 2003.06.01

Abstract

Prebiotics (peptides, N-acetyglucoamine, fructo-oligosaccharides, isomalto-oligosaccharides and galactooligosaccharides) were added to skim milk in order to improve the growth rate of contained Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium longum and Bifidobacterium bifidum. The purpose of this research was to study the potential synergy between probiotics and prebiotics when present in milk, and to apply modern optimization techniques to obtain optimal design and performance for the growth rate of the probiotics using a response surface-modeling technique. To carry out response surface modeling, the regression method was performed on experimental results to build mathematical models. The models were then formulated as an objective function in an optimization problem that was consequently optimized using a genetic algorithm and sequential quadratic programming approach to obtain the maximum growth rate of the probiotics. The results showed that the quadratic models appeared to have the most accurate response surface fit. Both SQP and GA were able to identify the optimal combination of prebiotics to stimulate the growth of probiotics in milk. Comparing both methods, SQP appeared to be more efficient than GA at such a task.

Keywords

Probiotics;Optimization;Genetic Algorithms;Sequential Quadratic Programming

References

  1. Lee, J., L. Ye, W. O. Landen and R. R. Eitenmiller. 2000. Optimization of an extraction procedure for the quantification of vitamin E in tomato and broccoli using response surface methodology. J. Food Comp. Analy. 13:45-57 https://doi.org/10.1006/jfca.1999.0845
  2. Nikitas, P., A. Pappa-Louisi, A. Papageorgiou and A. Zitrou. 2001. On the use of genetic algorithms for response surface modeling in high-performance liquid chromatography and their combination with the Microsoft Solver. J. Chromatography A 942:93-105 https://doi.org/10.1016/S0021-9673(01)01353-X
  3. Losada, M. A. and T. Olleros. 2002. Towards a healthier diet for the colon: the influence of fructooligosaccharides and lactobacilli on intestinal health. Nutr. Res. 22:71-84 https://doi.org/10.1016/S0271-5317(01)00395-5
  4. Myers R. H. and D. C. Montgomery. 1995. Response surface methodology: process and product optimization using designed experiments. 1st Ed. John Wiley & Sons, Inc. New York. p.183-207
  5. Playne, M. 1994. Probiotic foods. Journal of Food Australia, 46:362
  6. Weng, W, Y. Liu and W. Lin. 2001. Studies on the optimum models of the dairy product Kou Woan Lao using response surface methodology. Asian-Aust. J. Anim. Sci. 14(10):1470-1476 https://doi.org/10.5713/ajas.2001.1470
  7. Desmond, C., C. Stanton, F. Fitzgerald, K. Collins and R. P. Ross. 2002. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 12:183-190 https://doi.org/10.1016/S0958-6946(02)00040-7
  8. Holzapfel, W. H. and U. Schillinger. 2002. Introduction to pre- and probiotics. Food Res. Int. 35: 109-116 https://doi.org/10.1016/S0963-9969(01)00171-5
  9. Dave, R. I. and N. P. Shah. 1997. Ingredient supplementation effects on viability of probiotic bacteria in yogurt. J. Dairy Sci. 81:2804-2816 https://doi.org/10.3168/jds.S0022-0302(98)75839-4
  10. Liu, Y., M. Chen and W. Lin. 2002. Studies on Lao-Chao culture filtrate for a flavoring agent in a yogurt-like product. Asian-Aust. J. Anim. Sci. 15(3):172-179 https://doi.org/10.5713/ajas.2002.172
  11. Ishibashi, N. and S. Shimamura. 1993. Bifidobacteria: Research and development in Japan. Food Tech. 46: 126-135
  12. The Math Works Inc. 2000. Using Matlab. The Math Works Inc., MA, USA
  13. Hayakawa, K., J. Mizutani, K. Wada, T. Masai, I. Yoshihara and T. Mitsuoka. 1990. Effects of soybean oligosaccharides on human fecal flora. Microbial Ecology in Health and Disease 3:293-303 https://doi.org/10.3109/08910609009140252
  14. Spellucci, P. 1998. An SQP method for general nonlinear programs using only equality constrained subproblems. Mathematical Programming 82:413-448
  15. Bielecka, M., E. Biedrzycka and A. Majkowska. 2002. Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Research International 35:125-131 https://doi.org/10.1016/S0963-9969(01)00173-9
  16. Djouzi, Z. and C. Andrieux. 1997. Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human fecal flora. Brit. J. Nutr. 78:313-324 https://doi.org/10.1079/BJN19970149
  17. Porretta, A., A. Birzi, C. and E. Vicini. 1995. Effects of ultra-high hydrostatic pressure treatments on the quality of tomato juice. Food Chem. 52:35-41 https://doi.org/10.1016/0308-8146(94)P4178-I
  18. Saxena, S. N., B. K. Mital and S.K. Garg. 1994. Effect of casitone and fructose on the growth of L. Acidophilus and its survival during storage. Int. J. Food Micro. 21:271-276 https://doi.org/10.1016/0168-1605(94)90034-5
  19. Bessaou. M. and P. Siarry. 2001. A genetic algorithm with realvalue coding to optimize multimodel continuous functions. Struct Multidisc Optim 23:63-74 https://doi.org/10.1007/s00158-001-0166-y
  20. Lourens-Hattingh, A. and C. Viljoen, 2001. Yogurt as probiotic carrier food. Int. Dairy J. 11:1-17 https://doi.org/10.1016/S0958-6946(01)00036-X
  21. Wang, Q. J. 1997. Using genetic algorithms to optimize model parameters. Environ Model Software 12:27-34 https://doi.org/10.1016/S1364-8152(96)00030-8
  22. Mitsuoka, T., H. Hidaka and T. Eida. 1987. Effect of oligosaccharides on intestinal microflora. Die Nahrung 31:427-436 https://doi.org/10.1002/food.19870310528
  23. Gibson, G.R., R.A. Rastall and M. B. Roberfroid. 1999. Prebiotics in: colonic microbiota, nutrition and Health. Dordrecht, Kluwer. 101-124
  24. Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Publishing Company
  25. Mitchell, M., 1996. An introduction to genetic algorithms. The MIT Press, London, England.
  26. Fooks, L. J., R. Fuller and G. R. Gibson. 1999. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 9:53-61 https://doi.org/10.1016/S0958-6946(99)00044-8
  27. Lapierre, L., P. Undeland and L. J. Cox. 1992. Lithium Chloride-Sodium Propionate agar for the enumeration of bifidobacteria in fermented dairy products. J. Dairy Sci. 75:1192-1196 https://doi.org/10.3168/jds.S0022-0302(92)77866-7
  28. Mattila-Sandholm, T., P. Mylarinen, R. Crittenden, G. Mogensen, R. Fonden and M. Saarela. 2002. Technological challenges for future probiotic foods. International Dairy Journal, 12: 173-182 https://doi.org/10.1016/S0958-6946(01)00099-1

Cited by

  1. ) flour on some physicochemical and sensory properties of synbiotic yoghurt vol.128, pp.1757-899X, 2016, https://doi.org/10.1088/1757-899X/128/1/012035
  2. Antimicrobial and antidiabetic potential of synbiotic fermented milk: A functional dairy product pp.1364727X, 2018, https://doi.org/10.1111/1471-0307.12555