배추좀나방과 파밤나방의 효소활성 및 flupyrazofos 에 의한 AChE 활성 저해

Activities of esterase and acetylcholinesterase on the diamond backmoth, Plutella xylostella (Lepidoptera : Yponomeutidae) and beet armywarm, Spodoptera exigua (Lepidoptera : Noctuidae) and inhibitions of acetylcholinesterase with flupyrazofos

  • Lee, Sang-Guei (National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Chon, Gil-Hyong (National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Lee, Hoi-Seon (Division of Applied Biotechnology, College of Agriculture, Chonbuk National University) ;
  • Hwang, Chang-Yeon (Department of Agricultural Biology, Chonbuk National University) ;
  • Han, Man-Jong (National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Park, Hyung-Man (National Institute of Agricultural Science and Technology, Rural Development Administration)
  • 발행 : 2003.03.27

초록

매추좀나방과 파밤나방에 대한 flupyrazofos 의 작용기작을 구명하기위하여 한국화학연구소에서 분양을 받아 실내에서 19 세대 누대 사육한 배추좀나방과 포장에서 채집하여 실내에서 인공사료를 이용하여 25세대 누대사육한 파밤나방을 대상으로 효소활성도 및 flupyrazofos 에 의한 AChE 활성 저해정도를 조사한 결과는 다음과 같다. 배추좀나방과 파밤나방의 머리에 있는 AChE의 활성도는 배추좀나방 1령$\sim$4령에서 $1.5\sim11.1$ ng/larva/ruin 이었고, 파밤나방 1령$\sim$6령에서 $1.7\sim45.2$ ng/larva/min로 나타나 4령이상의 영기에서는 $25\sim30$배이상 높았다. 배추좀나방과 파밤나방에 대한 aliesterase 의 활성도는 배추좀나방 1령충에 비하여 배추좀나방 2령$\sim$4령에서는 머리와 복부에서 각각 $1.7\sim4.7$배와 $3\sim17$배 이하였으나, 파밤나방 3령$\sim$6령에서는 $8\sim55$배와 $12\sim30$배 이상이었다. Flupyrazofos 에 의한 AChE 반수저해농도 $(I_{50})$는 배추좀나방 2령과 4령에서 각각 92 nM과 $1.8{\mu}M$이었고 파밤나방 2령과 4령에서 각각 $15{\mu}M$과 3.1mM로 나타나 파밤나방은 배추좀나방 보다 약 $162\sim1,720$배 이상 높은 농도를 보였다.

참고문헌

  1. Chu, Y.I. (1986) The migration of diamondback moth. In Talekar, N. S. and Griggs, TD. (eds), Diamondback Moth Management, Proceedings of the First International Workshop. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan (ROC). pp.77-81
  2. Chung, T. and C. Sun. (1983) Malathion and MIPC resistances in Nilaparvata lugens Star (Homoptera Delphacidae). J. Econ. Entomol. 76:1-5
  3. Dai, S.M. and C.N. Sun. (1984) Pyrethroid resistance and synergism in Nilaparvata lugens Stal (Homoptera : Delphacidae) in Taiwan. J. Econ. Entomol. 77:891897
  4. Ellman, G.L., KD. Courtney, V. Andres Jr. and R.M. Featherstone. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. BioChem. Pharmacol. 7:88-95
  5. Hama, H. and A. Hosoda. (1983) High aliesterase activity and low acetylcholinesterase sensitrvity involved in organophosphorus and carbamate resistance of the brown phanthopper, Nilaparvata lugens Stal (Homoptera Delphacidae). Appl. Ent. Zool. 18:475-485
  6. Hwang, K.J. (1989) Phosphoric and thiophosphonic acid derivatives of 5-hydroxypyrazoles compositions and use. Korea Research Institute of Chemical Techno-logy. pp.11
  7. Kim, K, J.H. Kim and Y.H. Kim. (1997) Study on Physiochemical Properties of Pesticides. Agricultural Chemistry and Biotechnology 40(1):76-79
  8. Kono, Y. and Y. Manabe. (1983) Insecticidal activity of TIA-230 and aliesterases in several insect species. J. Takeda Res. Lab. 42(3/4):330-337
  9. Kono, Y., Y. Sato and Y. Okada. (1983) Activation of an O-ethyl S-n-popyl phosphorothiolate, TIA-230, in the central nerve of Spodoptera Larvae. Pestic. Biochem. Physiol. 20:225- 231 https://doi.org/10.1016/0048-3575(83)90027-5
  10. Lee, S.W. (1995) Studies on the mechanisms and genetics of pyraclofos resistance in the housefly. Doctorate dissertation, Univ. Tsukuba. pp.146
  11. Lee, S.G., C.Y. Hwang, J.K Yoo, S.W. Lee, B.R. Choi and J.O. Lee. (1997) Insecticidal activity of flupyrazofos against Plutella xylostella (Lepidoptera: Yponomeutidae) and Spodoptera exigua (Lepidoptera: Noctuidae). The Korean J. Pesti. Sci. 1(1):48-51
  12. Mikkola, K. (1970) The interpretation of long-range migration of Spodoptera exigua (Lepidoptera Noctuidae). J. Anim. Ecol. 39:593-598
  13. Miyamoto, T. (1992) Studies on activation of organophosphorus insecticides. J. Pesticide Sci. 17:115123
  14. Miyata, T., T. Saito and K, Ozaki. (1983) In vitro degradation of malathion by organophosphate resistant and susceptible strains of brown planthopper, Nilaparvata lugens St$\aa$l. J. Pesticide Sci. 8:27-31
  15. Oppenoorth, F.J. and K van Asperen. (1960) Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science. 132:298-299
  16. Oppenoorth, F.J. and W. Welling. (1976) Biochemistry and physiology of resistance. In Insecticide Biochemistry and Physiology. (C.F. Wilkinson eds.), New york, Plenum Press, pp.507-551
  17. Park, H.M. and S.Y. Choi. (1991) Changes in esterase activity and acethylcholinesterase sensytivity of insecticide-selected strains of the brown planthopper (Nilaparvata lugens Still). Korean J. Appl. Entomol. 30(2):117-123
  18. Plapp. F.W. (1976) Biochemical genetics of insecticide resistance. Ann. Rev. Entomol. 21:179-197
  19. Segall, Y. and J.E. Casida. (1982) Oxidative conversion of phosphorothiolates to phosphinyloxysulfonates pobably via phosphorothiolate S-oxides. Pestic. Tetrahedron Lettes 23(2):139-142 https://doi.org/10.1016/S0040-4039(00)86768-4
  20. Shorey, H.H. and R.L. Hale. (1965) Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J. Beon. Entomol. 58:522,524
  21. Smissaert, H.R. (1964) Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science. 143:129-131
  22. Terriere. L.C. (1984) Induction of detoxication enzymes in insects. Ann. Rev. Entomol. 29:71-88
  23. van Asperen, K. (1962) A study of housefly esterase by means of a sensitive colorimetric method. J. Ins. Physiol. 8:401-416
  24. Wing, K.D., A.H Glickman and J.E. Casida. (1984) Phosphorothiolate pesticides and related compounds : Oxidative bioactivation and aging of the inhibited acetylcholinesterase. Pestic. Biochem. Physiol. 21:22-30
  25. Yang, J.E, B.Y Cho and K.Y. You. (1997) Leaching and Absorption of Flupyrazofos. Kor. J. Env. Agri. 16(1):72-79