Range of physicochemical parameters for active ingredients of herbicides

제초제의 활성 성분에 대한 물리-화학 파라미터의 범위

  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 송선섭 (한국삼공(주))
  • Published : 2003.03.27

Abstract

Various physicochemical parameters for the active ingredients of 245 herbicides were calculated to develope a diagnosis and estimation system for utility as herbicide. The range of physico-chemical parameters for each inhibitors of photo system II (H1), acetolactate synthase (ALS) (H2) and herbicides were confirmed. The distribution ranges of 85% dependence for each physicochemical parameters were Obs.logP :$-0.90\sim4.50$, dipol moment: $1.80\sim12.22$ (debye), molecular refractivity: $53.0\sim104.0(cm^3/mol)$, polarizability: $19.0\sim37.0(\AA^3)$, HOMO energy: $-9.98\sim-7.34$ (eV), LUMO energy:$-2.76\sim0.40$ (eV), Van der Waals molecular volumes: $558.0\sim995.0(cm^3)$, molecular weight: $202.0\sim430.0$ (amu) and surface areas (Grids): $194.0\sim356.0(\AA^2)$, hydration energy: $-10.16\sim114.7$ Kcal/mol, respectively. It is suggested that MR and polarizability constants will be able to distinguish between herbicides and medicinal drugs. Results revealed that various compounds based on the range of physicochemical parameters of herbicides could be diagnosed and estimated.

농업용 약물로서의 활용성 진단과 예측을 위한 기초 자료로서 상용화 된 제초제와 같은 분자량을 가지는 의약 각 245 종에 대한 10 가지의 물리 -화학 파라미터들을 계산하고 제초제와 광합성 (PS-II) 저해제 및 acetolactase synthase (ALS) 저해제들의 특정한 물리-화학 파라미터들에 대한 수치 범위를 비교 검토하였다. 제초제들의 특정 물리-화학 파라미터에 대한 85% 의존적 수치 범위는 소수성 상수 (Obs. logP): $-0.90\sim4.50$, 쌍극자 능율 (DM): $1.80\sim12.22$ Debye, van der Waals 분자부피 (Vol.); $558\sim995Cm^3$ 및 표면적 (S.Area): $194\sim356\;{\AA}^2$, molar refractivity (MR): $53\sim104Cm^3/mol$., 분극율 (Pol): $19\sim37\;{\AA}^3$, 분자량 : $202\sim430(amu)$, 및 수화 에너지 (Hy.E): $-10.16\sim114.7$ Kcal/mol 등 이었다. 그리고 작용 기작에 따라 물리-화학파라미터의 범위값을 특징적으로 나타내고 있음을 알았으며 MR 상수와 분극율은 의약과 제초제 (ALS 저해제)를 구분하는 판별 가능한 요소가 될 것으로 예상되었다.

References

  1. ACCVIP (2002) The Australian Computational Chemistry via the Internet Project, Computational Chemistry Teaching Modules. Basic Quantitative Struture Activity Relationships (QSAR)/ www.chem.swin.edu. au
  2. ACS (2000) Scifmder Scholar (Ver. 2000), American Chemical Society, Washington, DC. U.S.A
  3. CMC (1996) Computational Medicinal Chemistry, CMC modeling guide, Computer Aided Molecular Design, QSAR, Faculty of PhAnnacy Utrecht University; www.cmc.pharm.uu.nl, Netherlands
  4. ACPA (2002) Research and Testing from Laboratory to Label: The Research, Testing and Registration of Agricultural Chemicals, American Crop Protection Association /www. croplifeamerica. org
  5. Dewar, M. J. S. and W. Thiel (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters, results for molecule. J. Am. Chem. Soc. 99:4899-4906
  6. Fujita, T. (1983) Substitution Effects in Partition Coefficient of Disubstituted Benzenes: Bidirectional Hammett-Type Relationships. pp.75-113, Vol.14, In Progress in Physical Organic Chemistry (ed. Taft, R. W.), John Wiley & Sons. Toronto
  7. Hansch, C. and Fujita, T. (1964) ${\rho-\sigma-\pi}$ Analysis A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc, 86:1616-1626
  8. Hansch. C. and A. Leo, (1995) Pesticide QSAR. Ch. 12 In Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, ACS Professional Reference Book, American Chemical Society, Washington, DC
  9. HRAC (2002) Publications, Classification of Herbicides according to Mode of Action, Herbicide Resistance Action Committee, /plant protection. org /HRAC
  10. Hsu, F, C, R. L. Marxiller and Alex Y. S. Yang (1990) Study of root uptake and xylem translocation of cinmethylin and related compound in detopped soybean roots using a pressure chamber technique, Plant Physiol. 93:1573-1578
  11. Hyperchem (1993) Hyperchem for Windows (Ver. 6.5). Ch. 7, 169-216, In Chemical Calculations. Hyper Cube Inc, Ontario, Canada
  12. Leonard G. C. and H. G. Hewitt, (1998a) Chemistry and Mode of Action of Crop Protection Agents, 21, The Royal Society of Chemistry. UK
  13. Leonard G. C. and H. G. Hewitt, (1998b) Chemistry and Mode of Action of Crop Protection Agents, 29 The Royal Society of Chemistry. UK
  14. Kubinyi, H. (1993) QSAR: Hansch Analysis and Related Approaches, Ch. 3-5, VCH, New York
  15. Peter, B. and S. Gerhard (1993) Target assays for modem herbicides and related phytotoxic compounds, 83-84 & 131-140. Lewis Publishers
  16. Prous, J. R. and N. E. Mealy, M. N. Serradell and P. Blancafort (1985) Annual Drug Data Report, Vol. VII. Prous Science
  17. Sarri, L. L. (1999) A prognosis for discovering new herbicide sites of action. Pesticide Chemistry and Bioscience, pp.207-220, In The Food-Environment Challenge (Ed. G. T. Book and T. R. Robers). Royal Society of Chemistry, Cambridge
  18. Tanaka S., M. Takahashi, Y. Funaki, K. Izumi, H. Takano and Miyakado (1995) Hydrophobicity and Systemic Activities of Fungicidal Triazoles and Blaching Herbicidal Compounds, Ch. 8, pp.108-119, In Classical and Three-Dimensional QSAR in Agrochemistry (ed Hansch, C. and T. Fujita), ACS symposium Series No. 606, American Chemical Society, Washington, D.C. USA
  19. Tomlin, C. D. S. (2000) The Pesticide Manual (12Ed.), The British Crop Protection Council
  20. Zimdahl, R .L, (1993) Fundamentals of Weed Science 450. Academic Press, Inc. San Diego
  21. 성낙도, 송종환, 전동주 (2001) 6-benzofuryl-2-[1(alkoxyimino)alkyl]-3-hydroxyclohex-2-en-1-one 유도체중 2,3dihydro-2,3,4,6,7-pentamethylbenzofuran-5-yl 치환체들의 구조와 제초활성과의 관계, 한국농약과학회지 5(3): 12-17
  22. 성낙도 (2002a) 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발. I. 기본 개념과 QSAR 기법의 유형, 한국농약과학회지 6(3): 166-174
  23. 성낙도 (2002b) 구조-활성상관 (QSAR) 기 법 에 의한 새로운 농약의 개발. II..자유 에너지 직선관계 (LFER)와 설명인자들, 한국농약과학회지 6(4): 231-243
  24. 송선섭 (2003) 농약의 활성 성분에 대한 물리-화학파라미터. 충남대학교 대학원, 석사학위논문