DOI QR코드

DOI QR Code

Precision Position Control of Piezoactuator Using Inverse Hysteresis Model and Neuro-PID Controller

역히스테리시스 모델과 PID-신경회로망 제어기를 이용한 압전구동기의 정밀 위치제어

  • 김정용 (울산대학교 기계공학과) ;
  • 이병룡 (울산대학교 기계ㆍ자동차공학부) ;
  • 양순용 (울산대학교 기계ㆍ자동차공학부) ;
  • 안경관 (울산대학교 기계ㆍ자동차공학부)
  • Published : 2003.01.01

Abstract

A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is an inverse hysteresis model, base on neural network and the feedback control is implemented with PID control. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance.

References

  1. 박창엽, '세라믹스,' 김영출판사, 1987
  2. Z. X. Wang, K. jouaneh and D. Dornfield, 'Design and characterization of a linear motion piezoeloectric microactuator,' IEEE Conf. Robotics and Automation, pp. 1710-1715, 1989 https://doi.org/10.1109/ROBOT.1989.100222
  3. S. Jung and S. Kim, 'Inprovement of scanning accuracy of PZT piezoeletric actuators by feed forward model-reference control,' Precision Eng. Vol. 16, No. 1, pp. 49-55, 1994 https://doi.org/10.1016/0141-6359(94)90018-3
  4. C. V. Newcomb and I. Flinn, 'Improving the linearity of piezoelectrid ceramic actuators,' Electronics Letters, Vol. 18, No. 11, pp. 442-444, May, 1982 https://doi.org/10.1049/el:19820301
  5. H. Kaizuka and B. Sui, 'A simple way to reduce hysteresis and creep when using piezoelectric actuators,' Japan J. Appl. Phys, Vol. 27, No. 5, pp. 773-776, 1988 https://doi.org/10.1143/JJAP.27.L773
  6. M. Tanaka, Z. W. Jiang and S. Chonan, 'Force control of a flexible finger with distributed force sensors and piezoelectric actuators,' Proceedings of the 1st International Workshop on Advanced Mechatronics, pp. 237-241, 1995
  7. P. Ge and M. Jouaneh, 'Tracking control of a piezoceramic actuator,' IEEE transactions on control systems technology, Vol. 4, No. 3, 1996 https://doi.org/10.1109/87.491195
  8. 정세웅, '학습제어를 이용한 압전구동기 시스템의 초정밀 위치제어,' 울산대학교 1999
  9. 홍성룡, '히스테리시스를 보상을 이용한 압전구동기의 정밀 위치제어' 울산대학교 2000
  10. 정승배, 박준호, 김승우, '현미경을 위한 압전구동기의 비선형 모델링,' 대한기계학회 논문집, 제 18 권, 제 9 호, pp. 2272-2283, 1994
  11. P. Ge and M. Jouaneh, 'Modeling hysteresis in piezoceramic actuator,' Precision Eng, Vol. 17, pp. 211-221, 1995 https://doi.org/10.1016/0141-6359(95)00002-U
  12. 이상원, '기계 신경망', Ohm Company, 1995
  13. S. Haykin, 'Neural Networks,' Macmilan, 1994
  14. S. T. Smith and D. G. Chetwynd, 'Foundation of ultraprecision mechanism design,' Gordon and Breach Science Publishers, pp. 99-100, 1994