DOI QR코드

DOI QR Code

Eigenvalue Assignment for Linear Time-Varying Systems via Ackermann-like Formula

선형 시변 시스템의 고유치 지정을 위한 Ackermann형 공식

  • Published : 2003.03.01

Abstract

This paper deals with eigenvalue assignment techniques for linear time-varying systems as a way of achieving feedback stabilization. For this, the novel eigenvalue concepts, which are the time-varying counterparts of the conventional (time-invariant) eigenvalue notions, are introduced. Then, the Ackermann-like formulae for SISO/MIMO linear time-varying systems are proposed. It is believed that these techniques are the generalized versions of the Ackermann formulae for linear time-invariant systems. The advantages of the proposed Ackermann-like formulae are that they neither require the transformation of the original system into the phase-variable form nor compute the eigenvalues of the original system. Two examples are given to demonstrate the capabilities of the proposed techniques.

References

  1. C. C. Nguyen, 'Canonical Transformation for a Class of Time-Varying Multivariable Systems,' International Journal of Control, vol. 43, no. 4, pp. 1061-1074, 1986 https://doi.org/10.1080/00207178608933523
  2. K. Ramar, and B. Ramaswami, 'Transformation of Time-Variable Multi-Input to a Canonical Form,' IEEE Transactions on Automatic Control, vol. 16, no. 4, pp. 371-374, 1971 https://doi.org/10.1109/TAC.1971.1099740
  3. C. E. Seal, and A. R. Stubberud, 'Canonical Forms for Multi-Input Time-Variable Systems,' IEEE Transactions on Automatic Control, vol. 14, no. 6, pp. 704-707, 1969 https://doi.org/10.1109/TAC.1969.1099335
  4. L. M. Silverman, 'Transformation of Time-Variable Systems to Canonical (Phase-Variable) Form,' IEEE Transactions on Automatic Control, vol. 11, no. 2, pp. 300-303, 1966 https://doi.org/10.1109/TAC.1966.1098312
  5. G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addision-Wesley Publishing Company, 1994
  6. J. J. Zhu, and C. D. Johnson, 'Unified Canonical Forms for Matrices over a Differential Ring,' Linear Algebra and Its Application, vol. 147, pp. 201-248, 1991 https://doi.org/10.1016/0024-3795(91)90235-O
  7. J. J. Zhu, 'A Unified Spectral Theory for Linear Time-Varying Systems-Progress and Challenges,' Proceedings of the 34th Conference on Decision and Control, pp. 2540-2546, 1995 https://doi.org/10.1109/CDC.1995.478474
  8. W. A. Wolovich, 'On the Stabilization of Controllable Systems,' IEEE Transactions on Automatic Control, vol. 13, no. 5, pp. 569-572, 1968 https://doi.org/10.1109/TAC.1968.1098993
  9. C. C. Nguyen, 'Arbitrary Eigenvalue Assignment for Linear Time-Varying Multivariable Systems,' International Journal of Control, vol. 45, no. 3, pp. 1051-1057, 1986 https://doi.org/10.1080/00207178708933787
  10. M. Valasek, and N. Olgac, 'Efficient Pole Placement Technique for Linear Time-Variant SISO Systems,' IEE Proceedings-Control Theory and Applications, vol. 142, no. 5, pp. 451-458, 1995 https://doi.org/10.1049/ip-cta:19951959
  11. M. Valasek, and N. Olgac, 'Efficient Eigenvalue Assignment for General Linear MIMO Systems,' Automatica, vol. 31, no. 11, pp. 1605-1617, 1995 https://doi.org/10.1016/0005-1098(95)00091-A
  12. M. Valasek, and N. Olgac, 'Pole Placement for Linear Time-Varying Nonlexicographically Fixed MIMO Systems,' Automatica, vol. 35, no. 1, pp. 101-108, 1999 https://doi.org/10.1016/S0005-1098(98)00134-4
  13. J. W. Choi, H. C. Lee, and J. J. Zhu, 'Decoupling and Tracking Control Using Eigenstructure Assignment for Linear Time-Varying Systems,' International Journal of Control, vol. 74, no. 5, pp. 453-464, 2001 https://doi.org/10.1080/00207170010008761
  14. J. J. Zhu, 'A Necessary and Sufficient Stability Criterion for Linear Tme-Varying Systmes,' Proceedings of the 26th IEEE Southeastern Symposium on System Theory, pp. 115-119, 1996
  15. J. J. Zhu, 이호철, 최재원, '선형 시변 시스템에 대한 잘 정의된 직렬 및 병렬 D-스펙트럼,' 제어. 자동화. 시스템 공학 논문지, 제 5 권, 제 5 호, pp. 521-528, 1999