DOI QR코드

DOI QR Code

Eigenvalue Assignment for Linear Time-Varying Systems via Ackermann-like Formula

선형 시변 시스템의 고유치 지정을 위한 Ackermann형 공식

  • Published : 2003.03.01

Abstract

This paper deals with eigenvalue assignment techniques for linear time-varying systems as a way of achieving feedback stabilization. For this, the novel eigenvalue concepts, which are the time-varying counterparts of the conventional (time-invariant) eigenvalue notions, are introduced. Then, the Ackermann-like formulae for SISO/MIMO linear time-varying systems are proposed. It is believed that these techniques are the generalized versions of the Ackermann formulae for linear time-invariant systems. The advantages of the proposed Ackermann-like formulae are that they neither require the transformation of the original system into the phase-variable form nor compute the eigenvalues of the original system. Two examples are given to demonstrate the capabilities of the proposed techniques.

References

  1. J. J. Zhu, 이호철, 최재원, '선형 시변 시스템에 대한 잘 정의된 직렬 및 병렬 D-스펙트럼,' 제어. 자동화. 시스템 공학 논문지, 제 5 권, 제 5 호, pp. 521-528, 1999
  2. M. Valasek, and N. Olgac, 'Pole Placement for Linear Time-Varying Nonlexicographically Fixed MIMO Systems,' Automatica, vol. 35, no. 1, pp. 101-108, 1999 https://doi.org/10.1016/S0005-1098(98)00134-4
  3. J. W. Choi, H. C. Lee, and J. J. Zhu, 'Decoupling and Tracking Control Using Eigenstructure Assignment for Linear Time-Varying Systems,' International Journal of Control, vol. 74, no. 5, pp. 453-464, 2001 https://doi.org/10.1080/00207170010008761
  4. J. J. Zhu, 'A Necessary and Sufficient Stability Criterion for Linear Tme-Varying Systmes,' Proceedings of the 26th IEEE Southeastern Symposium on System Theory, pp. 115-119, 1996
  5. W. A. Wolovich, 'On the Stabilization of Controllable Systems,' IEEE Transactions on Automatic Control, vol. 13, no. 5, pp. 569-572, 1968 https://doi.org/10.1109/TAC.1968.1098993
  6. C. C. Nguyen, 'Arbitrary Eigenvalue Assignment for Linear Time-Varying Multivariable Systems,' International Journal of Control, vol. 45, no. 3, pp. 1051-1057, 1986 https://doi.org/10.1080/00207178708933787
  7. M. Valasek, and N. Olgac, 'Efficient Pole Placement Technique for Linear Time-Variant SISO Systems,' IEE Proceedings-Control Theory and Applications, vol. 142, no. 5, pp. 451-458, 1995 https://doi.org/10.1049/ip-cta:19951959
  8. M. Valasek, and N. Olgac, 'Efficient Eigenvalue Assignment for General Linear MIMO Systems,' Automatica, vol. 31, no. 11, pp. 1605-1617, 1995 https://doi.org/10.1016/0005-1098(95)00091-A
  9. J. J. Zhu, and C. D. Johnson, 'Unified Canonical Forms for Matrices over a Differential Ring,' Linear Algebra and Its Application, vol. 147, pp. 201-248, 1991 https://doi.org/10.1016/0024-3795(91)90235-O
  10. J. J. Zhu, 'A Unified Spectral Theory for Linear Time-Varying Systems-Progress and Challenges,' Proceedings of the 34th Conference on Decision and Control, pp. 2540-2546, 1995 https://doi.org/10.1109/CDC.1995.478474
  11. C. E. Seal, and A. R. Stubberud, 'Canonical Forms for Multi-Input Time-Variable Systems,' IEEE Transactions on Automatic Control, vol. 14, no. 6, pp. 704-707, 1969 https://doi.org/10.1109/TAC.1969.1099335
  12. L. M. Silverman, 'Transformation of Time-Variable Systems to Canonical (Phase-Variable) Form,' IEEE Transactions on Automatic Control, vol. 11, no. 2, pp. 300-303, 1966 https://doi.org/10.1109/TAC.1966.1098312
  13. G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addision-Wesley Publishing Company, 1994
  14. C. C. Nguyen, 'Canonical Transformation for a Class of Time-Varying Multivariable Systems,' International Journal of Control, vol. 43, no. 4, pp. 1061-1074, 1986 https://doi.org/10.1080/00207178608933523
  15. K. Ramar, and B. Ramaswami, 'Transformation of Time-Variable Multi-Input to a Canonical Form,' IEEE Transactions on Automatic Control, vol. 16, no. 4, pp. 371-374, 1971 https://doi.org/10.1109/TAC.1971.1099740