• Kawakami, Tomohiro
  • Published : 2003.02.01


Let M be an exponentially bounded o-minimal expansion of the standard structure R = (R ,+,.,<) of the field of real numbers. We prove that if r is a non-negative integer, then every definable $C^{r}$ manifold is affine. Let f : X ${\longrightarrow}$ Y be a definable $C^1$ map between definable $C^1$ manifolds. We show that the set S of critical points of f and f(S) are definable and dim f(S) < dim Y. Moreover we prove that if 1 < s < ${\gamma}$ < $\infty$, then every definable $C^{s}$ manifold admits a unique definable $C^{r}$ manifold structure up to definable $C^{r}$ diffeomorphism. 炭᠂ ࠀ豈檧Ā檧Ā̀￿￿֗⨀Ā?ĀĀၧ잖⨀̀ĀĀ逅—⨀倅—⨀؀肀ქヨ⨀밟Ԁꀮ֗⨀⃬│胫│惭│郭│塻җ⨀뀯֗⨀찟퀟퀄—⨀Ԁ怯֗⨀í│탫│惭│烮│찟퀟퀄—⨀퀟ഀĀ顪—⨀Ā偫—⨀㠈—⨀ဩ—⨀Ȁᠩ—⨀—⨀⬀Ā 堪—⨀젪—⨀阁Ā1֗⨀⡧잖⨀̀⡧잖⨀̀܀屣잖⨀ࠀ褝⎨Ā⎨Ā̀￿￿屣잖⨀檧Ā䁧잖⨀聧잖⨀֗⨀?җ⨀堵֗⨀ഀ Ā


definable $C^{r}$ manifolds;definable $C^{r}$ maps;o-minimal;Sard's theorem;expotentionally bounded


  1. Ann. Math. v.140 The elementary theory of restricted analytic field with exponentiation L. van den Dries;A. Macintyre;D. Marker
  2. Duke Math J. v.1 A functions not constant on a connected set of critical points H. Whitney
  3. Topology Appl. v.123 no.2 Equivariant differential topology in an o-minimal expansion of he field of real numbers T. Kawakami
  4. Trans. Amer. Math. Soc. v.267 A relative Nash theorem S. Akbulut;H. King
  5. Annali Sc. Norm. Sup. Pisa v.27 Su una congettura di Nash A. Tognoli
  6. Proc. Amer. Math. Soc. v.122 Exponentiation is hard to avoid C. Miller
  7. Lecture notes series 248 Tame topology and o-minimal structures L. van den Dries
  8. A decision method for elementary algebra and geometry (2nd edition. revised) A.Tarski
  9. Trans. Amer. Math. Soc. v.350 The real field with convergent generalized power series L. van den Dries;P. Speissegger
  10. Preprint Equivariant definable $C^r$ approximation theorem, definable $C^r$G triviality of G invariant definable $C^r$ functions and compactifications T. Kawakami
  11. Progress in Math. v.150 Geometry of subanalyitc and semialgebraic sets M. Shiota
  12. Trans. Amer. Math. Soc. Definably simple groups in o-minimal structures Y. Peterzil;A. Pillay;S. Starchenko
  13. Proc. Amer. Math. Soc. v.96 Abstract Nash manifolds M. Shiota
  14. Current developments in Math. O-minimal structures and real analytic geometry L. van den Dries
  15. Bull. Korean Math. Soc. v.36 no.1 Imbeddings of manifolds defined on an o-minimal structure on (R, +, · , <) T. Kawakami
  16. Differential topology M. W. Hirsch
  17. Duke Math. J. v.84 Geometric categories and o-minimal structures L. van den Dries;C. Miller