DOI QR코드

DOI QR Code

AFFINENESS OF DEFINABLE Cr MANIFOLDS AND ITS APPLICATIONS

  • Kawakami, Tomohiro
  • Published : 2003.02.01

Abstract

Let M be an exponentially bounded o-minimal expansion of the standard structure R = (R ,+,.,<) of the field of real numbers. We prove that if r is a non-negative integer, then every definable $C^{r}$ manifold is affine. Let f : X ${\longrightarrow}$ Y be a definable $C^1$ map between definable $C^1$ manifolds. We show that the set S of critical points of f and f(S) are definable and dim f(S) < dim Y. Moreover we prove that if 1 < s < ${\gamma}$ < $\infty$, then every definable $C^{s}$ manifold admits a unique definable $C^{r}$ manifold structure up to definable $C^{r}$ diffeomorphism. 炭᠂ ࠀ豈檧Ā檧Ā̀￿￿֗⨀Ā?ĀĀၧ잖⨀̀ĀĀ逅—⨀倅—⨀؀肀ქヨ⨀밟Ԁꀮ֗⨀⃬│胫│惭│郭│塻җ⨀뀯֗⨀찟퀟퀄—⨀Ԁ怯֗⨀í│탫│惭│烮│찟퀟퀄—⨀퀟ഀĀ顪—⨀Ā偫—⨀㠈—⨀ဩ—⨀Ȁᠩ—⨀—⨀⬀Ā 堪—⨀젪—⨀阁Ā1֗⨀⡧잖⨀̀⡧잖⨀̀܀屣잖⨀ࠀ褝⎨Ā⎨Ā̀￿￿屣잖⨀檧Ā䁧잖⨀聧잖⨀֗⨀?җ⨀堵֗⨀ഀ Ā

Keywords

definable $C^{r}$ manifolds;definable $C^{r}$ maps;o-minimal;Sard's theorem;expotentionally bounded

References

  1. Ann. Math. v.140 The elementary theory of restricted analytic field with exponentiation L. van den Dries;A. Macintyre;D. Marker https://doi.org/10.2307/2118545
  2. Duke Math J. v.1 A functions not constant on a connected set of critical points H. Whitney https://doi.org/10.1215/S0012-7094-35-00138-7
  3. Topology Appl. v.123 no.2 Equivariant differential topology in an o-minimal expansion of he field of real numbers T. Kawakami https://doi.org/10.1016/S0166-8641(01)00200-0
  4. Trans. Amer. Math. Soc. v.267 A relative Nash theorem S. Akbulut;H. King https://doi.org/10.1090/S0002-9947-1981-0626484-4
  5. Annali Sc. Norm. Sup. Pisa v.27 Su una congettura di Nash A. Tognoli
  6. Proc. Amer. Math. Soc. v.122 Exponentiation is hard to avoid C. Miller https://doi.org/10.2307/2160869
  7. Lecture notes series 248 Tame topology and o-minimal structures L. van den Dries
  8. A decision method for elementary algebra and geometry (2nd edition. revised) A.Tarski
  9. Trans. Amer. Math. Soc. v.350 The real field with convergent generalized power series L. van den Dries;P. Speissegger https://doi.org/10.1090/S0002-9947-98-02105-9
  10. Preprint Equivariant definable $C^r$ approximation theorem, definable $C^r$G triviality of G invariant definable $C^r$ functions and compactifications T. Kawakami
  11. Progress in Math. v.150 Geometry of subanalyitc and semialgebraic sets M. Shiota
  12. Trans. Amer. Math. Soc. Definably simple groups in o-minimal structures Y. Peterzil;A. Pillay;S. Starchenko
  13. Proc. Amer. Math. Soc. v.96 Abstract Nash manifolds M. Shiota https://doi.org/10.2307/2045671
  14. Current developments in Math. O-minimal structures and real analytic geometry L. van den Dries
  15. Bull. Korean Math. Soc. v.36 no.1 Imbeddings of manifolds defined on an o-minimal structure on (R, +, · , <) T. Kawakami
  16. Differential topology M. W. Hirsch
  17. Duke Math. J. v.84 Geometric categories and o-minimal structures L. van den Dries;C. Miller https://doi.org/10.1215/S0012-7094-96-08416-1