Liu, Seqing;Kim, Jong-Kyu;Kang, Shin-Min

  • Published : 2003.04.01


The purpose of this paper is to establish the necessary and sufficient conditions which ensure the strong convergence of the Ishikawa iterative schemes with errors to the unique fixed point of a $\Phi$-hemicontractive mapping defined on a nonempty convex subset of a normed linear space. The results of this paper extend substantially most of the recent results.


${\Phi}$-hemicontractive mapping;strongly pseudocontractive mapping;${\Phi}$-strongly pseudocontractive mapping;strictly hemicontractive mapping;Ishikawa iterative scheme with errors


  1. Applicable Anal. v.27 Fixed point iterations for certain classes of nonlinear mappings C.E.Chidume
  2. Proc. Amer. Math. Soc. v.44 Fixed point by a new iteration method S.Ishikawa
  3. J. Math. Anal. appl. v.224 Iterative approaximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces S.S.Chang;Y.J.Cho;B.S.Lee;S.M.Kang
  4. J. Math. Anal. Appl. v.288 Convergence theorems for strictly psudo-contractive and strongly accretrive maps C.E.Chidume
  5. Proc. Amer. Math. Soc. v.125 Approximation of fixed points of a strictly psedocontractive mapping L.W.Liu
  6. Numer. Funct. Anal. Optimiz. v.15 Fixed point iterations for strictly hemicontractive maps in uniformly smooth Banach spaces C.E.Chidume;M.O.Osilike
  7. J. Math. Anal. Appl. v.178 Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces K.K.Tan;H.K.Xu
  8. Proc. Amer. Math. Soc. v.120 Approximation of fixed points of strongly pseudo-contractive mappings C.E.Chidume
  9. J. Math. Anal. Appl. v.192 Ishikawa iteration process for onlinear Lipschitz strongly accretive mappings C.E.Chidume;M.O.Osilike
  10. J. Math. Anal. Appl. v.194 Ishikawa and Mann iterative process with errors for nonlinear storngly accretive mappings in Banach spaces L.S.Liu
  11. J. Math. Anal. Appl. v.224 Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations Y.XU
  12. Nonlinear Anal. T. M. A. v.26 Iterative solutions of nonlinear equations in smooth Banach spaces C.E.Chidume
  13. Proc. Amer. Math. Soc. v.26 Mean value methods in iteration W.R.Mann
  14. Proc. Amer. Math. Soc. v.99 Iterative approaximation of fixed point of Lipschitz strictly pseu-doccontractive mappings C.E.Chidume
  15. Nonlinear Anal. v.36 Iterative solution of nonlinear accretive operator equations in arbitrary Banach spaces C.E.Chidume;M.O.Osilike
  16. Math. Nachr. v.153 On a theorem of C. E. Chidume concerning the iterative approximaton of fixed points J.Schu
  17. J. Math. Soc. Japan v.19 Nonlinear semigroups and evolution equations T.Kato
  18. J. Math. Anal. Appl. v.192 Iterative solutions of nonlinear equations with strongly accretive operators C.E.Chidume
  19. J. Math. Anal. Appl. v.200 Iterative solution of nonlinear equations of Ø-storngly accretive type M.O.osilike
  20. J. Korean Math. Soc. v.36 Ishikawa and Mann iterative processes with errors for nonlinear $\phi$-strongly quasi-accretive mappings in normed linear spaces H.Y.zhou;Y.J.Cho
  21. Nonlinear Anal. v.30 Some problems and results in the study of nonlinear analysis S.S.Chang

Cited by

  1. Implicit iteration scheme for two phi-hemicontractive operators in arbitrary Banach spaces vol.2013, pp.1, 2013,