Characterization of Adhesion of Bifidobacterium sp. BGN4 to Human Enterocyte-Like Caco-2 Cells

  • Published : 2003.04.01

Abstract

The adhesion of probiotic bacteria to the intestinal mucosa is one of the desirable properties for their colonization in the intestinal tract, where these bacteria constantly compete with other bacteria. The adhesion of different strains of bifidobacteria to Caco-2 cells was compared. Among the strains examined, BGN-4 showed the highest adhesion level and the greatest cell surface hydrophobicity (CSH). No close relationship was found between the adhesion and CSH of the strains. Upon protease and heat treatment, the adhesion of the BGN-4 to the Caco-2 cells decreased significantly. The cells grown at $42^{\circ}C$ showed a lower CSH and self-aggregation levels than cells grown at $37^{\circ}C$. The treatment of EGTA did not have any effect on the adhesion. The degree of adhesion did not differ among the experimental groups in which galactose, mannose, or fucose were added in the adhesion assay mixture. The results suggest that the adhesion of the Bifidobacterium to the epithelial cells may be affected by the composition and structure of the cell membrane and interacting surfaces.

References

  1. Appl. Environ. Microbiol. v.59 Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions Bernet, M. F.;D. Brassart;J. R. Neeser;A. L. Servin
  2. The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria The genus Bifidobacterium Biavati, B.;B. Sgorbati;V. Scardovi;Balows, A.(ed.);Trupen, H. G.(ed.);Dworkin, M.(ed.);Harder, W.(ed.);Schlifer, K. H.(ed.)
  3. Appl. Environ. Microbiol. v.59 Inhibition of adhesion of Escherichia coli K 88 to piglet ileal mucus by Lactobavilus spp. Blomberg, L.;A Henriksson;P. L. Conway
  4. J. Gen. Microbiol. v.138 Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells Chauvire, G.;M. H. Coconnier;S. Kerneis;J. Fourniat;A. L. Srevin https://doi.org/10.1099/00221287-138-8-1689
  5. Lett. Appl. Microbiol. v.21 Adhesion of different bifidobacteria stains to human enterocyte-like Caco-2 cells and comparison with in vivo study Crociani, J.;J. P. Grill;M. Huppert;J. Ballongue https://doi.org/10.1111/j.1472-765X.1995.tb01027.x
  6. Lett. Appl. Microbiol. v.27 Autoaggregation and adhesion ability in a Bifidobacterium suis strain Del Re B.;A. Busetto;G. Vignola;B. Sgobati;D. L. Palenzona https://doi.org/10.1046/j.1472-765X.1998.00422.x
  7. J. Natl. Cancer Res. v.59 One hundred and twenty seven cultures human tumor cell lines producing tumors in nude mice Fogh, J.;J. M. Fogh;T. Orfeo
  8. Curr. Microbiol. v.28 In vitro binding of Bifidobacterium bifidum DSM 20082 to inucosal gycoproteins and hemagglutinating activity Fontaine, I. E.;E. A. Aissi;S. J. L. Bouquelet https://doi.org/10.1007/BF01570196
  9. J. Microbiol. Methods v.18 Microbial cell surface hydrophobicity. The involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH) Geertsema-Doornbusch, G. I.;H. C. van der Mei;H. J. Busscher https://doi.org/10.1016/0167-7012(93)90072-P
  10. J. Appl. Bacteriol. v.77 Regulatory effects of bifidobacteria on the growth of other colonic colonic bacteria Gibson, G. R.;X. Wang https://doi.org/10.1111/j.1365-2672.1994.tb03443.x
  11. Appl. Envion. Microbiol. v.60 Factros involved in adherence of lactobacilli to human Caco-2 cells Greene, J. D.;T. R. Klaenhammer
  12. J. Microbiol. Biotechnol. v.12 Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts Lee, M. J.;Z. Zang;E. Y. Choi;H. K. Shin;G. E. Ji
  13. A Color Atlas of Anaerobic Bacteria (2nd Ed.) Mitsuoka, T.
  14. Infect. Immun. v.47 Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells Op den Camp, H. J.;A. Oosterhof;J. H. Veerkamp
  15. J. Microbiol. Biotechnol. v.11 Molecular cloning and characterization of the β-galactosidase gene from Bifidobacterium adolescentis Int57 Park, M. S.;K. H. Lee;G. E. Ji
  16. Int. J. Foffd. Microbiol. v.46 Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium Park, S. Y.;G. E. Ji;Y. T. Ko;H. K. Jung;U. Zeynep;J. J. Pestka https://doi.org/10.1016/S0168-1605(98)00197-4
  17. Appl. Environ. Microbiol. v.64 Surface properties of bifidobacterial strains of human origin Perez, P. F.;Y. Minnaard;E. A. Disalvo;G. L. D. Antoni
  18. Biol. Cell. v.47 Enterocytelike differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture Pinto, M.;S. Robine-Leon;M. D. Appray;M. Kedinger;N. Triadou;E. Dussaulx;B. Lactrox;P. Simon-Assmann;K. Haffen;J. Fogh;A. Zweibaum
  19. Bifidobactaaeria and their Role Rasic, J. L.;J. A. Kurmann
  20. Biol. Pharm. Bull. v.18 Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis Sekine, K.;J. Ohta;M. Onishi;T. Tatsuki;Y. Shimokawa;T. Toida;T. Kawashima;Y. Hashimoto https://doi.org/10.1248/bpb.18.148
  21. The Lactic Acid Bacteria v.Ⅱ The genus Bifidobacterium Sgorbati, B.;B. Biavati;D. Palenzona
  22. Thesis. University of Paris Recherches sur la flore intestinale normale et pathologique du nourisson Tissier, H.
  23. J. Appl. Bacteriol v.62 Surface properties of lactobacilli isolated from the small intestine of pigs Wadstrom, T.;K. Andersson;M. Sydow;L. Axelsson;S. Lindgren;B. Gullmar https://doi.org/10.1111/j.1365-2672.1987.tb02683.x