개구 결합된 십자형 페치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch

박기동 · 정문숙* · 임영석*
Ki-Dong Park · Mun-Suk Jeong* · Yeong-Seog Lim*

요약

시간영역 유한차분법을 이용하여 2.4 GHz와 5.8 GHz의 ISM 대역을 위한 이중대역 마이크로스트립 안테나를 설계한다. 2개의 구형 패치가 결합된 십자형 패치를 안테나의 방사소자로 제작하고 급변 방식은 개구 결합을 이용한다. 안테나 설계를 위해 개구와 스텐의 길이 변화에 따른 입력 임피던스의 변화를 살펴보고, 방사
소자의 길이와 폭 변화에 따른 중심 주파수와 -10 dB 대역폭을 고찰한다. 반사손실에 대한 계산 결과를 IE3D의 해석 결과 및 측정 결과와 비교하여 건 일치함을 확인하고, 주파수 2.43 GHz와 5.79 GHz에서 안테나의 방사패턴을 측정하여 -3 dB 빔폭, 전후방비 및 최대 이득을 제시한다.

Abstract

Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch fed by aperture in the ground plane of microstrip line is proposed as radiation element of antenna, which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and -10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And -3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Key words : Dual-Band Antenna, Cross Patch, ISM, FDTD

I. 서론

고도화 정보 사회를 지원하는 정보통신 시스템 부분 중 무선등산망을 활용한 고속, 대용량 정보의 전송기술에 대한 필요성이 크게 대두되고 있는 추세이다. 이에 따라 무선통신 시스템에서 사용되는 주파수 대역 또한 점차 고주파의 활용이 가시화 되고 있다. 이 중 2.4 GHz와 5.79 GHz의 주파수 대역을 이용한 무선 네트워크 기반 시스템에 관한 연구가 활발히 이루어지고 있다. 특히 ISM(Industrial Scientific Medical) 대역으로 일정에지는 2.4 GHz 대역(2.4~2.483 GHz)을 이용한 무선 네트워크 기술의 개발이 활발히 추진되어 왔으며, 점차 5.8 GHz 대역(5.725~5.85 GHz)을 이용하는 기술 개발 역시 가시화 되고

*이 논문은 2001년도 한국전산정보대학의 지원에 의하여 연구되었다(KRF-2001-003-E00180).
**동일학부 정보통신학과(Dept. of Information & Communication, Dongkang College)
*전남대학교 전자공학부(Dept. of Electronic Engineering, Chonnam National University)
*논문 번호: 20021226-181
*수정완료일자: 2003년 3월 12일
있는 상황이다.

현재 2.4 GHz 대역을 이용하는 무선 통신 기술은 무선 렌드(Wireless LAN), 블루투스(Bluetooth), 지능형 교통 시스템(ITS: Intelligent Transport System)의 서브 서비스 분야에 주차관리 시스템, 자동요금징수 시스템(ETCS: Electronic Toll Collection System) 등에 적용되어 상황에 이르고 있으며, 5.8 GHz 대역에서 차세대 ITS 서비스를 위한 단거리 전용 통신망 (DSRC: Dedicated Short Range Communication)이 구축될 것으로 기대되고 차세대 무선 렌 또한 이 주파수 부근 대역을 사용할 것으로 예상된다. 따라서 ISM 대역을 이용한 무선 통신망이 차세대 정보통신망의 근간을 이룰 것이 확실시되고, 이와 같은 상황 속에서 무선 통신망의 구축을 위해 가장 기본적인 논의 중 하나는 신호를 송수신할 수 있는 고성능 안테나의 개발일 것이다.

본 논문에서는 시간영역 유한차분(FDTD: Finite Difference Time Domain)[12]법을 이용하여 2.4 GHz와 5.8 GHz ISM 이중 대역에서 다양한 마이크로스트립 안테나를 설계하는데, 안테나의 방사 소자를 둘러싸는 심사형 페치를 제한하고 급변 방식은 개구(aperture) 결함을 이용한다[13].

기존에 보고된 이중대역 페치 안테나들은 크게 orthogonal-mode, multi-path 및 reactive-loaded로 표현되는 경우가 주부에 의해서 분류될 수 있다[12]. orthogonal-mode 이중대역 페치 안테나는 두 주파수에서 동일한 페치를 갖추고 서로 페치 특성을 나타내는 단점이 있으며, multi-path 이중대역 페치 안테나는 두 주파수에서 동일한 페치 특성을 갖기는 하지만 두 주파수 간격이 큰 경우에 대한 설계가 어려다는 단점이 있다.

현재 구현되고 있는 이중대역 안테나의 대부분이 속하는 반주파 reactive-loaded 이중대역 페치 안테나는 단일 페치에 reactive loading을 하여 이중대역에서 동작하도록 한 것이다. 스타브(stub), 노치(notch), 단락 케이블(short pin), 커버시타(capacitor) 및 슬롯(slot)이 reactive loading을 하여 사용되는데, 이들 중 스타브 방식 소자에서 연결시킴으로써 이중 궤진을 일으키는 방법이 가장 단순하면서도 효율적이기할 수 있다.

따라서 본 논문에서도 단일 구형 패치에 일중의 스타브 역할을 하도록 좌측 양(arm) 형태로 각은 구형 패치를 연결시켜 구성한 심사형 페치를 방사소자로 사용하여 이중대역 안테나를 구현한다. 이 안테나 구조는 두 주파수에서 동일한 결과를 갖으며 주파수비의 조절이 쉽게 이루어지는 장점을 갖고 있다.

본 논문의 제 2장에서는 안테나 설계를 위해 이용한 FDTD법에 대해 간략하게 설명한다. 제 3장에서는 제안된 안테나 구조를 설명하고 개구와 마이크로스트립 급변 선로의 스타브 길이 변환에 따른 입력 임피던스의 변화를 살펴보며, 방사 소자의 간격이 좌측에 따른 주파수와 -10 dB 대역폭 변화에 대한 특성 결과를 제시한다. 제 4장에서는 제안된 5G 결과의 해석 결과를 제시한다. 제 5장에서는 제안된 안테나 구조에 대한 측정 결과를 정리하면서 결론을 짤린다.

Ⅱ. FDTD법

FDTD는 광범위하게 전자기 해석에 이용되어 있으며 초기에는 동방성(isotropic), 비산란질(non-dispersive)에만 적용되었다가 차후 이방성(anisotropic), 산란질(dispersive)까지 적용되었고, 최근에는 저차화된 케이블내 폴라라이저 같은 복잡한 매질까지 확장되었다[16]. 그리고 한 번의 계산을 통해 관심을 두는 주파수 대역의 정보를 얻기 위한 장점이 있으나, 반면에 계산 매모리를 많이 차지하는 단점이 있다. 따라서 계산 매모리를 줄이기 위해 성능이 우수한 흡수경계조건(Absorbing Boundary Condition)을 적용할 필요가 있다. 최근에 Berenger가 PML(Perfectly Matched Layer)을 처음 제안한 후 많은 연구가 이루어졌다[17], 본 논문에서는 기존의 PML 보다 낮은 특징을 가지고 있는 GT-PML(Generalized Theory of Perfectly Matched Layer)을 적용시켰다[18].

FDTD는 유한 공간 해석에 대하여 백스 격 측 방정식을 이산화하고, 그 도함수의 중심 차분 근사를 적용하여 근사화 함으로써 수치화 된다. 수치화는 구조내에서 전자파 전파특성을 지배하는 미분형태의 백스 격 curl 방정식으로부터 유도되어진다. 전자파가 전파하는 매질의 근원성, 동방성 및 균질
\[E_{x,i,j,k}^{n+\frac{1}{2}} = E_{x,i,j,k}^{n} + \frac{dt}{e_0} \left(H_{y,i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - H_{y,i,j-\frac{1}{2},k}^{n+\frac{1}{2}} \right) \]
\[H_{y,i,j,k}^{n+\frac{1}{2}} = H_{y,i,j,k}^{n} + \frac{dt}{\mu_0 e_0} \left(E_{x,i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - E_{x,i,j-\frac{1}{2},k}^{n+\frac{1}{2}} \right) \]
\[H_{x,i,j,k}^{n+\frac{1}{2}} = H_{x,i,j,k}^{n} + \frac{dt}{\mu_0 e_0} \left(E_{y,i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - E_{y,i,j-\frac{1}{2},k}^{n+\frac{1}{2}} \right) \]
\[E_{y,i,j,k}^{n+\frac{1}{2}} = E_{y,i,j,k}^{n} + \frac{dt}{\mu_0 e_0} \left(H_{x,i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - H_{x,i,j-\frac{1}{2},k}^{n+\frac{1}{2}} \right) \]

여기서 \(\Delta x, \Delta y, \Delta z \)는 각각 \(x, y \) 및 \(z \) 방향으로의 공간 동분 층 단위 간격에서의 각 방향 미소 크기를 나타낸다. 식 (3)과 (4)에서 +1/2, -1/2 시간단계들은 시간 도함수들의 중심 차분을 얻는데 전계 \(\frac{\partial}{\partial x} \)와 자체 \(\frac{\partial}{\partial y} \)가 교대로 계산된다는 것을 나타낸다. 이 방정식들은 유전율은 각 시간 단계의 위치에 따라 적절한 값을 설정되어야 한다. 예로, 공기와 유전체 경계면선의 접선 경계 성분들에 대해서는 두 유전율의 평균, \((\varepsilon_0 + \varepsilon_r)/2 \)를 사용한다.

FDTD를 사용하여 해석할 때 시간 영역 응답의 수치적인 안정성을 확인하기 위해, 시간단계 \(\Delta t \)가 단위 격자 크기와 해석 영역의 매질을 전하하는 평형과의 최대 전압 속도에 의해 제한되지 않도록 Courant 안정 조건이 필요하다고 하여 다음 식 (5)과 같다.

\[\Delta t \leq \frac{s}{v_{max}} \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{\frac{1}{2}} \]

여기서 \(v_{max} \)는 평형파의 최대 전파 속도, \(s \)는 안정 계수로 '1'보다 작아야 한다.

III. 안테나 설계

본 연구에서는 작정한 FDTD 해석 프로그램을 이용하여 2.4 GHz와 5.8 GHz의 이중대역에서 사용 가능한 마이크로스트립 안테나를 설계하였다. 그럼 1은 본 논문에서 설계한 안테나의 구조를 나타낸다. 십자형 패치를 안테나의 방사소자로 계산하였는데, 이 모양은 5.8 GHz 대역의 구형 패치(\(L_x \times W_y \))에 작은 구형 패치(\(L_y \times W_y \))를 \(y \) 바탕으로 고정하여 \(L_x \times W_y \) 부분이 2.4 GHz 대역의 방사소자로서 역할을 하도록 구성한 것이다. 제안된 십자형 패치는 2.4 GHz 대역의 구형 패치(\(L_y \times W_y \))와 5.8 GHz 대역의 구형 패치(\(L_x \times W_y \))가 결합한 형태이다. 금전은 마이크로스트립 선로에 의한 개구 결합방식을 사용하였다. 그리고 ISM 대역에서 요구되는지는 대역폭을 얻기 위해 금전 선로와 방하시 조사의 유전체 층 사이에 공기 중을 두었다.
FDTD로 해석할 때 단위 격자 크기 $\Delta x=0.36$ mm, $\Delta y=0.4$ mm, $\Delta z=0.261$ mm로 하였으며 PML 내의 단위 격자 수는 모두 방향에서 10개를 두었고 PML영역을 포함한 전체 계산 영역은 $120 \times 180 \times 65$ 개의 단위 격자로 분할하였다. 시간 스텝은 안정조건에 의해 $\Delta t=0.4$ ps로 하였고 총 반복 시간 스텝 수$n=50000$으로 계산하여 안정확한 시간영역 파형을 얻었으며, 이 시간영역 파형을 이산 푸리에 변환 (DFT: Discrete Fourier Transform)함으로써 필요한 주파수영역 정보를 추출하였다.

안테나 설계 및 제작에서 사용된 기판은 $h_1=h_2=0.78$ mm, $\varepsilon_r=2.6$인 흑골판 기판을 사용하였으며 삽입된 공기 층의 높이 $h=5$ mm로 하였다.

안테나의 초기 구조에 대한 설계는 다음과 같이 이루어졌다. 설계 주파수를 각각 $f_1=2.44$ GHz, $f_2=5.77$ GHz로 선택하였고, 이 주파수에 의해 상자형 패치에서 $L=56.4$ mm $\approx \lambda/2$, $L_z=23.6$ mm $\approx \lambda_z/2$인 길이 L과 L_z을 결정하였다. 여기서 λ_z은 각각 주파수 f_1, f_2에서 파장이다. 마이크로스트립 선로의 폭 $W=2.16$ mm로 하여 50 Ω의 금선 선로가 되도록 하였고 스타브 길이 $S_z=8$ mm $\approx 0.22 \lambda_z$로 정하였다.

여기서 λ_z는 50 Ω 마이크로스트립 선로에 대한 주파수 $f=5.77$ GHz에서의 파장이다.

그리고 개구 길이 A_0은 일반적으로 낮은 유전율 상수의 금선 기판을 사용하는 경우 약 0.082 A_0이고 개구 폭 A_w은 A_0의 0.1배 정도이다[6]. 여기서 A_0은 실제 주파수에서 자유공간의 파장이다. 본 논문에서 는 이중 대역을 만족시킬 수 있는 개구 길이와 폭을 얻기 위해 면적 주파수 f_0에서의 개구 길이 11 mm와 주파수 f_2에서의 개구 길이 4.3 mm 사이의 중간 값, 즉 4.3 mm $< A_0 < 11$ mm의 중간 값에 대해 단위격자 Δx의 크기를 고려하여 개구 길이 $A_0=7.92$ mm로 선택한 후, 단위격자 Δy의 크기를 고려하여 개구 폭 $A_w=0.8$ mm로 정하였다. 나머지 파라미터 W_1, W_2은 임의의 값을 가정하였다.

그림 2는 개구 길이 A_0을 가변시킴으로써 입력 임피던스의 변환을 구스도포에서 살펴본 것이다. 입력 임피던스의 계산을 위한 기준면의 위치는 개구의 중심으로부터 y 방향으로 10 $\Delta y=4$ mm 밖이어서 측정으로 가금적 방사 소자의 금선형인 개구 중심에 근접하도록 설정하였다. 개구 길이가 작아지면 2.4 GHz 대역에서는 파워가 점진적으로 스미스 도표의 원점 쪽으로 이동하고 5 GHz 대역에서는 모든 궤도 이 원점 부근에서 나타난다. 그리고 개구 길이의 변화가 2.4 GHz 대역에서의 임피던스 정합에는 크게 영향을 미치지만 5 GHz 대역에서는 그렇지 않다는 것을 확인할 수 있다.

그림 2의 입력 임피던스의 궤도를 살펴보면 개구 길이 $A_0=25.2$ mm일 때 임피던스 정합이 두 대역에서 잘 이루어진 것으로 보인다. 그러나 이 경우 2.4 GHz 대역에서 입력 임피던스의 하부 부분이 '0'일 때의 주파수를 살펴보면 2.52 GHz로서 설계 주파수 f_2에 큰 차이가 있다. 또한 5 GHz 대역의 모든 입력 임피던스 궤도는 설계 주파수 f_2에서 거의 정합이 이
그림 2. 개구 길이 A_t에 따른 입력 임피던스 변화
(Fig. 2. Input impedance change versus aperture length A_t (S=8 mm, A_w=0.8 mm, L_t=16.4 mm, W_t=3.6 mm, W_c=12.96 mm)

루어지지 않는 것을 보여준다.

따라서 본 논문에서는 먼저 2.4 GHz 대역을 설계하기 위해 2.4 GHz 대역에서 입력 임피던스의 허수 부분이 '0'일 때의 주파수와 정합 특성을 고려하여 개구 길이 A_t=28.08 mm를 선택하였다.

그림 3은 스타브 길이 S_t을 가변 시키면서 입력 임피던스의 변화를 살펴본 것이다. 스타브 길이 변화 역시 2.4 GHz 대역에서의 임피던스 정합 특성에는 큰 영향을 주지만 5 GHz 대역에서는 적은 영향을 준다는 것을 확인할 수 있다. 2.4 GHz 대역의 입력 임피던스 특성을 살펴보면 스타브 길이 S_t=5.6 mm 일 때 실제 주파수 f_1에서 가장 좋은 정합특성을 나타내므로 이 값을 안내나 설계에 사용하였다.

그러나 5 GHz 대역에서의 모든 입력 임피던스 계획은 개구 길이 변화의 경우처럼 실제 주파수에서 크게 벗어난다. 이러한 사실은 5 GHz 대역의 설계주 파수에서 임피던스 정합을 이루기 위해서는 방사 소자 파라미터를 변화시킬 필요가 있음을 의미한다.

 이를 위해 5 GHz 대역의 주파수 변화에 크게 영향을 미칠 것으로 생각되는 십자형 패치에서 길이 L_2 변화에 따른 중심 주파수가 -10 dB 대역폭의 변화를 그림 4에 나타내었다. 계산 과정에서 A_t과 S_t은 각각 그림 2와 3으로부터 선택한 값을 사용하였으며 L_2를 변화시키더라도 임피던스 정합 특성은 이전과 크게 달라지지 않는 것을 확인하였다.

길이 L_2가 증가함에 따라 두 대역에서 중심 주파수는 낮아지는데 그 변화 정도가 5 GHz 대역에서 측정될 경우 나타나는 것을 확인할 수 있다. 이는 L_2를 변화시킬 경우, 5 GHz 대역의 파장에 대한 길이 L_2 변화의 정도가 상대적으로 2.4 GHz 대역의 파장에 대한 길이 $2L_1+L_2$의 변화 정도보다 더 크기 때문이다.
그림 4. 길이 L_2에 따른 중심주파수와 -10 dB 대역폭 변화

Fig. 4. Center frequency and -10 dB bandwidth change versus length L_2 ($A_0 = 28.08$ mm, $S_2 = 5.6$ mm, $A_w = 0.8$ mm, $L_1 = 16.4$ mm, $W_i = 3.6$ mm, $W_z = 12.96$ mm).

그림 4에서 볼 수는 2.4/5.8 GHz ISM 대역의 설계 주파수에 가장 큰 중심 주파수를 갖는 길이 $L_2=21.2$ mm가 가리킨다. 그러나 이 L_2값에서 2.4 GHz ISM 대역의 중심 주파수는 설계 주파수 f_0보다 약간 높고 5.8 GHz ISM 대역의 중심 주파수는 설계 주파수 f_0보다 약간 낮다.

그림 5는 실제형 제자리에서 폭 W_i의 변화에 따른 중심 주파수와 -10 dB 대역폭의 변화를 나타낸다. W_i가 증가하면 2.4 GHz 대역의 중심 주파수는 낮아지고 5 GHz 대역의 중심 주파수는 약간 높아지는 것을 알 수 있다. 결국 W_i의 변화는 L_2의 변화에 비해 중심 주파수를 큰 편차로 이동시키지 않으면서 중심 주파수를 미세 조정하는데 유용하게 될 것을 확인 할 수 있다. 그리고 W_i가 증가함에 따라 -10 dB 대역폭은 2.4 GHz와 5 GHz 대역에서 줄어들며 L_2 변화의 경우보다 대역폭의 변화 정도가 크다는 것을 알 수 있다. 그림 6에 그려진 곡선은 2.4/5.8 GHz ISM 대역의 설계 주파수와 일치하는 중심 주파수를 갖는 폭 $W_i=5.04$ mm를 가리킨다.

그림 4와 5의 결과로부터 실제형 제자리의 길이와 폭을 조절함으로써 2.4 GHz와 5 GHz 대역에서 원하는 중심 주파수를 갖는 이중대역 마이크로스트립 안테나의 설계가 가능하다는 것을 확인할 수 있다.

IV. 결론

앞에서 ISM 대역을 이중대역 마이크로스트립 안테나를 설계하기 위해 안테나의 초기 구조로부터 다양한 파라미터를 가변시키면서 설계 본 해석 결과를 제시하였다. 이 결과로부터 중심 주파수와 -10 dB 대역폭이 2.4 GHz와 5.8 GHz ISM 대역에서 요구되는 사항을 만족시키는 경우의 설계 파라미터를 찾아 표 1에 나타내었다.

그림 6은 표 1의 파라미터를 이용하여 제작된 안테나에 대해 반사손실(S_{11})을 측정하고 그 결과를 FDTD와 IES3의 해석 결과와 함께 비교하여 제시한 것이다. 반사손실의 측정은 벡터 네트워크 분석기인 Anritsu-37325A를 사용하였다. 그리고 중심 주파수와 -10 dB 대역폭을 비교하여 표 2에 나타내었다.

표 1. 안테나의 설계 파라미터 (단위:mm)

<table>
<thead>
<tr>
<th>파라미터</th>
<th>A_0</th>
<th>S_2</th>
<th>A_w</th>
<th>L</th>
<th>W</th>
<th>L_1</th>
<th>L_2</th>
<th>W_i</th>
<th>W_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>값</td>
<td>28.08</td>
<td>5.6</td>
<td>0.8</td>
<td>54.0</td>
<td>30.96</td>
<td>16.4</td>
<td>21.2</td>
<td>5.04</td>
<td>12.96</td>
</tr>
</tbody>
</table>

Fig. 6. Comparison of return loss(S_{11}).
표 2. 중심 주파수와 -10 dB 대역폭의 비교
Table 2. Comparison of center frequency and -10 dB bandwidth.

<table>
<thead>
<tr>
<th>주파수대역</th>
<th>방법</th>
<th>FDTD</th>
<th>IE3D</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 GHz</td>
<td>중심 주파수[GHz]</td>
<td>2.44</td>
<td>2.433</td>
<td>2.425</td>
</tr>
<tr>
<td></td>
<td>-10 dB 대역폭 [GHz, %]</td>
<td>2.393~2.488(3.89)</td>
<td>2.388~2.478(3.70)</td>
<td>2.3725~2.485(4.64)</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>중심 주파수[GHz]</td>
<td>5.76</td>
<td>5.755</td>
<td>5.785</td>
</tr>
<tr>
<td></td>
<td>-10 dB 대역폭 [GHz, %]</td>
<td>5.64~5.88(4.17)</td>
<td>5.628~5.89(4.55)</td>
<td>5.6425~5.935(5.06)</td>
</tr>
</tbody>
</table>

표 2의 결과를 살펴보면 FDTD, IE3D 및 측정 결과가 잘 일치함을 확인할 수 있고, 2.4 GHz와 5.8 GHz의 ISM 대역에서 요구되는 대역폭을 만족시킨다는 것을 알 수 있다.

그림 7은 측정된 입력 임피던스를 나타낸 것이다. 주파수 2.425 GHz와 5.785 GHz에서 각각 47.849\(\pm3.598\)Ω, 50.568\(\pm0.627\)Ω로 임피던스 정합이 잘 이루어지고 있다.

그림 8은 주파수 2.43 GHz와 5.79 GHz에서 안테나의 방사패턴을 측정하여 도시한 것이다. 방사패턴은 프랑스 SATIMO사의 근거리장 STARGATE-32 시스템으로 측정되었다. E-plane과 H-plane의 -3 dB 빔폭은 2.43 GHz에서 각각 88.57\(^\circ\), 122.86\(^\circ\) 이고 5.79 GHz에서 각각 131.43\(^\circ\), 71.43\(^\circ\)로 나타났으며, 전후방비는 2.43 GHz에서 10.12 dB이고 5.79 GHz에서 7.27 dB로 나타났다.

(a) 2.4 GHz 주파수 대역
(a) 2.4 GHz frequency band

(b) 5.8 GHz 주파수 대역
(b) 5.8 GHz frequency band

그림 7. 입력 임피던스의 측정 결과
Fig. 7. Measured results of input impedance.

그림 8. 측정된 방사패턴
Fig. 8. Measured radiation pattern.
표 3. 안테나 이득의 최대값 및 그 위치
Table 3. Maximum value of antenna gain and its position.

<table>
<thead>
<tr>
<th>주파수 [GHz]</th>
<th>방사패턴</th>
<th>E-plane(θ = 90°)</th>
<th>H-plane(θ = 0°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>최대값 [dB]</td>
<td></td>
<td>최대값 [dB]</td>
</tr>
<tr>
<td>2.38</td>
<td>4.45</td>
<td>-8.55</td>
<td>4.34</td>
</tr>
<tr>
<td>2.43</td>
<td>4.85</td>
<td>-8.59</td>
<td>4.95</td>
</tr>
<tr>
<td>2.48</td>
<td>4.91</td>
<td>-11.45</td>
<td>4.97</td>
</tr>
<tr>
<td>5.65</td>
<td>6.16</td>
<td>37.14</td>
<td>3.55</td>
</tr>
<tr>
<td>5.79</td>
<td>6.15</td>
<td>25.72</td>
<td>4.78</td>
</tr>
<tr>
<td>5.90</td>
<td>5.85</td>
<td>-42.86</td>
<td>5.41</td>
</tr>
</tbody>
</table>

그리고 주파수별로 측정된 E-plane과 H-plane의 방사패턴들에서 이득의 최대값 및 그 위치를 표 3에 정리하였다. 최대 이득은 2.4 GHz 대역폭 내에서 4.45 4.97 dB, 5.8 GHz 대역폭 내에서 5.85 6.16 dB로 나타났다. 표 3에서 5.8 GHz 대역의 결과를 살펴보면 E-plane 이득의 최대값이 H-plane 이득의 최대값에 비해 크게 나타나고 E-plane 이득의 최대값이 얻어지는 위치 또한 θ = 0°로부터 상당히 벗어난 각도에 있음을 확인할 수 있다. 이는 심지어 패치의 모양에 기인한다고 할 수 있다. 즉 E-plane의 방사패턴은 중앙에 위치한 5.8 GHz 대역의 구형 패치에서 발생하는 방사패턴과 2개의 줄은 함 형태를 갖는 구형 패치에서 발생하는 방사패턴들에 의해 형성되는데, 이 3개의 방사패턴들이 합쳐질 때 θ = 0°로부터 상당히 벗어난 각도에서 이득이 증가하기 때문이다. 그래서 E-plane 이득의 최대값이 θ = 0° 부근에서 이득의 최대값을 갖는 H-plane 보다 크게 나타난다.

또한 같은 이유로 인해 5.79 GHz의 E-plane 방폭이 H-plane 방폭보다 현저히 넓게 나타나게 되는 것을 그림 8에서 확인할 수 있다.

일반적인 개구 결합 급전 마이크로스트립 패치 안테나의 결합 메커니즘은 마이크로스트립 패치와 접촉시 사이의 거리에 따라 cavity type과 parasitic type으로 정의할 수 있으며 거리가 비교적 작은 경우 cavity type으로, 거리가 큰 경우 parasitic type으로 볼 수 있다. 그리고 parasitic의 경우에 cavity의 경우보다 약 2 dB 정도 더 큰 안테나 이득이 얻어지는데, 이는 패치가 개구로부터 패치로의 직접적인 복사로 유도하는 것처럼 보이며, 이것은 2자로 Yagi-Uda 베릴 안테나 구조의 도파기와 같은 역할을 하는 것으로 생각할 수 있다[2]. 본 논문에서 설계된 안테나는 패치와 접촉시 사이의 거리가 큰 경우인 parasitic type으로 볼 수 있으므로, 안테나의 이득이 크게 얻어지는 것으로 생각할 수 있다.

개구에서 패치로의 전자기적 결합 정도를 살펴보기 위해, 개구 바로 위에서의 전계 성분 E_z와 자기 성분 H_z 분포를 그림 9와 10에 도시하였다. 전자기 성분은 E_z와 H_z를 살펴보면 개구 길이가 2.4 GHz 대역에서는 약 ⅓ 길이로 일반적인 전자기 성분과 형식하므로 패치로의 전자기적 결합이 최대가 되는 것으로 생각할 수 있지만, 5.8 GHz 대역에서는 길이 보다 길기 때문에 촉 결합을 이루어내기 어려울 것으로 보인다. 이는 단일 개구를 사용하여 중심 주파수의 차이가 크고 파수 관계가 성립되지 않는 두 대역을 급전화하도록 설계했기 때문에 상대적으로 5.8 GHz 대역에서는 개구의 길이가 길어졌기 때문이다. 따라서

![그림 9. 개구 바로 위에서의 전계 성분 E_z 분포](a) f=2.44 GHz (b) f=5.76 GHz

Fig. 9. Electric field E_z distribution just above aperture.
두 대역 모두에서 최적의 전가역적 경향이 얻어지도록 개구와 방사 소자의 파라미터들에 대한 조절이 좀 더 이루어질 필요가 있다. 그러나 앞서 주어진 반사폭, 감리파트, 양각선형 및 안테나 이득의 결과를 고려하면 5.8 GHz 대역에서도 최적에 가까운 설계가 이루어졌다고 할 수 있을 것이다.

V. 결 론

본 논문에서는 2.4GHz와 5.8 GHz ISM 대역을 위한 이중대역 마이크로스트립 안테나를 설계하였다. 안테나의 방사소자로 2개의 구형 링치가 결쳐진 십자형 폐치를 제안하였고, 고전 방식은 개구 절합을 이용하였다. 안테나 설계를 위해 FDTD를 이용하여 개구와 스티브 길이 변화에 따른 입력 임피던스의 변화를 살펴보았고, 방사 소자의 길이와 폭 변화에 따른 중심 주파수와 주파수폭을 고찰하였다. 그리고 2.4 GHz와 5.8 GHz ISM 대역에서 요구하는 사양을 만족시키는 경우의 설계 파라미터를 찾아 안테나를 제작하였다.

제작된 안테나의 반사폭을 측정하고 그 결과를 FDTD와 IE3D의 해석 결과와 함께 비교하여 잘 일치할 수 있다. 그리고 안테나의 반사패턴을 측정하여 2.4GHz 대역폭 내에서 4.45 ~ 4.97 dB, 5.8 GHz 대역폭 내에서 5.85 ~ 6.16 dB의 최대이득을 얻었다.

제안된 안테나 구조는 2.4GHz와 5GHz 대역용 이중대역 마이크로스트립 안테나의 설계에 유용하게 적용될 수 있을 것이다. 특히, 무선 랜 서비스의 핵심 포인트용 안테나로 사용될 수 있을 것으로 생각한다.

앞으로 본 논문에서 제안한 안테나의 통합화 시키기 위해 개구와 방사 소자의 파라미터들에 대한 조절과정이 좀 더 수행되어야 하고, 더 나아가 중심 주파수와 같이의 크고 백수 관계가 생립되지 않는 이중 대역을 위한 새로운 개구 절합 구조에 대한 연구와 안테나 크기를 최적화시키기 위한 연구를 계속해야 할 것으로 생각한다.

참고 문헌

