Effect of Thermal Poling on the 1.55 μm Emission Characteristics of Er3+-doped Glasses

Er3+ 첨가 유리의 1.55μm 형광특성에 미치는 Thermal Poling의 영향

  • Lee, Tae-Hoon (Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Chung, Woon-Jin (Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Heo, Jong (Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 이태훈 (포항공과대학교 신소재공학과 광전자유리재료연구실) ;
  • 정운진 (포항공과대학교 신소재공학과 광전자유리재료연구실) ;
  • 허종 (포항공과대학교 신소재공학과 광전자유리재료연구실)
  • Published : 2003.05.01


Effect of the thermal poling on the 1.55 fm emission spectra in various Er$^{3+}$ -doped glasses was investigated with a special attention on the changes in the values of FWHM(Full Width at Half Maximum) intensity. Tellurite glasses poled at 28$0^{\circ}C$ with an electric voltage of 4 kV resulted in an approximately 6% increase in FWHM values compared with their unpoled counterparts. On the other hand, values for glasses, such as aluminosilicate, sulfide and chalcohalide, either decreased or remained unchanged. The characteristic results from tellurite glasses are most probably due to the presence of lone-pair electrons in the TeO$_4$ hi-pyramidal units that form the main network structure of tellurite glasses.


  1. Opt. Lett. v.23 Gain Characteristics of Tellurite-based Erbium-doped Fiber Amplifiers for 1.5㎛ Broadband Amplification Y.Ohishi;A.Mori;M.Yamada;H.Ono;Y.Nishida;K.Oikawa
  2. J. Non-Cryst. Solids v.256-257 $Pr^{3+}$ Doped InF₃/GaF₃Based Fluoride Glass Fibers and Ga-Na-S Glass Fibers for Light Amplification Around 1.3㎛ K.Itoh;H.Yanagita;H.Tawarayama;K.Yamanaka;E.Ishikawa;K.Okada;H.Aoki;Y.Matsumoto;A.Shirakawa;Y.Matsuoka;H.Toratani
  3. Electron. Lett. v.30 Highly Efficient 1.064㎛ Upconversion Pumped 1.47㎛ Thulium Doped Fluoride Fibre Laser R.M.Percival;D.Szebesta;J.R.Williams
  4. Electron. Lett. v.33 Erbium-doped Tellurite Glass Fibre Laser and Amplifier A.Mory;Y.Ohishi;S.Sudo
  5. Electron. Lett. v.33 Broadband and Gain-flattened Amplifier Composed of a 1.55㎛-band and a 1.58㎛-band Er-doped Fibre Amplifier in a Parallel Configuration M.Yamada;H.Ono;T.Kanamori;S.Sudo;Y.Ohishi
  6. Erbium-doped Fiber Amplifiers: Principles and Applications E.Desurvire
  7. Lasers and Excited States of Rare Earths R.Reisfeld;C.K.Jorgensen
  8. Opt. Lett. v.16 Large Second-order Nonlinearty in Poled Fused Silica R.A.Myers;N.Mukherjee;S.R.J.Brueck
  9. J. Lightwave Tech. v.15 Glass Fiber Poling and Applications P.G.Kazansky;P.S.J.Russel;H.Takebe
  10. Appl. Phys. Lett. v.74 Thermal Poling of Silica in Air and under Vacuum: The Influence of Charge Transport on Second Harmonic Generation V.Pruneri;F.Samoggia;G.Bonfrate;P.G.Kazansky;G.M.Yang
  11. J. Kor. Ceram. Soc. v.36 no.12 Induced Second Order Optical Nonlinearity in Thermally Poled Silica Glsses D.W.Shin
  12. J. Appl. Phys. v.83 Effect of Poling Temperature on Optical Second Harmonic Intensity of Sodium Zinc Tellurite Glsses A.Narazaki;K.Tanaka;K.Hirao;N.Soga
  13. J. Am. Ceram. Soc. v.83 $Pr^{3+} / Er^{3+}$ Codoped Ge-As-Ga-S Glasses as Dual-wavelength Fiber-optic Amplifiers for 1.31 and 1.55㎛ Windows S.H.Park;D.C.Lee;J.Heo
  14. J. Non-Cryst. Solids v.298 Optimization of $Dy^{3+}$-doped Ge-Ga-As-S-CsBr Glass Composition and its 1.31㎛ Emission Properties Y.B.Shin;C.K.Yang;J.Heo
  15. J. Appl. Phys. v.85 Induction and Relaxation of Optical Second-order Nonlinearity in Tellurite Glasses A.Narazaki;K.Tanaka;K.Hirao;N.Soga
  16. Jpn. J. Appl. Phys. v.32 Second Harmonic Generation in Poled Tellurite Glasses K.Tanaka;K.Kashima;K.Hirao;N.Soga
  17. J. Non-Cryst. Solids v.185 Second Harmonic Generation in Electrically Poled Li₂O-Nb₂$O_{5}$-TeO₂Glasses K.Tanaka;K.Kashima;K.Hirao;N.Soga;A.Mito;H.Nasu