DOI QR코드

DOI QR Code

HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Trif, Tiberiu (Universitatea Babes-Bolyai, Facultatea de Matematica si Informatica)
  • Published : 2003.05.01

Abstract

In this paper we deal With the quadratic functional equation (equation omitted) deriving from an inequality of T. Popoviciu for convex functions. We solve this functional equation by proving that its solutions we the polynomials of degree at most two. Likewise, we investigate its stability in the spirit of Hyers, Ulam, and Rassias.

Keywords

Hyers-Ulam-Rassias stability;quadratic functional equation;Popoviciu′s inequality

References

  1. J. Math. Anal. Appl. v.270 On the stability of a quadratic Jensen type functional equation Y.W.Lee https://doi.org/10.1016/S0022-247X(02)00093-8
  2. Problems in modern mathematics S.M.Ulam
  3. Abh. Math. Sem. Univ. Hamburg v.62 On the stability of the quadratic mapping in normed spaces S.Czerwik https://doi.org/10.1007/BF02941618
  4. Stability of funcational equations in several variables D.H.Hyers;G.Isac;Th.M.Rassias
  5. Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Th.M.Rassias https://doi.org/10.1090/S0002-9939-1978-0507327-1
  6. Seminaire de la theorie de la meilleure approxomation, convexite et optimisation On some functional equations deriving from the inequality of Tiberiu Popoviciu for convex functions B.Crstici;E.Popoviciu(ed.)
  7. J. Math. Anal. Appl. v.173 On the Hyers-Ulam stability of linear mappings Th.M.Rassias;P.Semrl https://doi.org/10.1006/jmaa.1993.1070
  8. Int. J. Math. Math. Sci. v.14 On stability of additive mappings Z.Gajda https://doi.org/10.1155/S016117129100056X
  9. Aequationes Math. v.27 Remarks on the stability of functional equations P.W.Cholewa https://doi.org/10.1007/BF02192660
  10. Nonlinear Funct. Anal. Appl. v.7 A generalization of the Hyers-Ulam-Rassias stability of the Popoviciu functional equation T.Trif
  11. Proc. Nat. Acad. Sci. U.S.A. v.27 On the stability of the linear functional equation D.H.Hyers https://doi.org/10.1073/pnas.27.4.222
  12. An. Stiint. Univ. Al. I. Cuza Iasi Sect. Ia Mat. v.11 Sur certaines inegalites qui caracterisent les fonctions convexes T.Popoviciu
  13. J. Math. Anal. Appl. v.222 On the Hyers-Ulam stability of the functional equations that have the quadratic property S.M.Jung https://doi.org/10.1006/jmaa.1998.5916
  14. J. Math. Anal. Appl. v.232 On the Hyers-Ulam-Rassias stability of a quadratic functional equation S.M.Jung https://doi.org/10.1006/jmaa.1999.6282
  15. J. Math. Anal. Appl. v.272 On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions T.Trif https://doi.org/10.1016/S0022-247X(02)00181-6
  16. Aequationes Math. v.44 Approximate homomorphisms D.H.Hyers;Th.M.Rassias https://doi.org/10.1007/BF01830975
  17. Functional equations in several variables J.Aczel;J.Dhombres
  18. J. Math. Anal. Appl. v.250 Hyers-Ulam-Rassias stability of a Jensen type functional equation T.Trif https://doi.org/10.1006/jmaa.2000.6995

Cited by

  1. Popoviciu Type Equations on Cylinders vol.67, pp.3-4, 2015, https://doi.org/10.1007/s00025-015-0440-8
  2. Stability Problem for Jensen–type Functional Equations of Cubic Mappings vol.22, pp.6, 2006, https://doi.org/10.1007/s10114-005-0736-9
  3. On extension of the solutions of the Popoviciu type equations on groups vol.147, pp.2, 2015, https://doi.org/10.1007/s10474-015-0512-y
  4. STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION IN 3-VARIABLES vol.29, pp.4, 2007, https://doi.org/10.5831/HMJ.2007.29.4.543