DOI QR코드

DOI QR Code

A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES

  • Published : 2003.05.01

Abstract

We prove a simplified version of the Nash-Moser implicit function theorem in weighted Banach spaces. We relax the conditions so that the linearized equation has an approximate inverse in different weighted Banach spaces in each recurrence step.

References

  1. J. Geom. Anal. v.4 Sufficient conditions for the extension of CR structures D.Catlin https://doi.org/10.1007/BF02922141
  2. Extension of CR structures on three dimensional compact pseudoconvex CR manifolds D.Catlin;S.Cho
  3. Pacific J. of Math. v.207 Embedding of pseudoconvex CR manifolds with Levi-forms one degenerate eigenvalue S.Cho https://doi.org/10.2140/pjm.2002.207.311
  4. Bull. Amer. Math. Soc. v.7 The inverse function theorem of Nash and Moser R.Hamilton https://doi.org/10.1090/S0273-0979-1982-15004-2
  5. Acta. Math. v.113 L² estimates and existence theorems for the ∂-operator L.Hormander https://doi.org/10.1007/BF02391775
  6. Arch. Rat. Mech. Anal. v.62 The boundary problems of physical geodesy L.Hormander
  7. Lectures at Standford University, Summer Quarter Implicit function theorems L.Hormander
  8. Annales Acad. Sci. Fenniae, Series A.I. Math. v.10 On the Nash-Moser implicit function theorem L.Hormander https://doi.org/10.5186/aasfm.1985.1028
  9. Trans. Amer. Math. Soc. v.181 Global regularity for ∂ on weakly pseudo-convex manifolds J.J.Kohn https://doi.org/10.2307/1996633
  10. Proc. Nat. Acad. Sci. v.47 A new technique for the construction of solutions of nonlinear differential equations J.Moser https://doi.org/10.1073/pnas.47.11.1824
  11. Ann. of Math. v.63 The imbedding problem for Riemannian manifolds J.Nash https://doi.org/10.2307/1969989
  12. Enseign. Math. v.35 no.2 A simple Nash-Moser implicit function theorem S.X.Raymond