DOI QR코드

DOI QR Code

CONFORMAL CHANGES OF A RIZZA MANIFOLD WITH A GENERALIZED FINSLER STRUCTURE

  • Park, Hong-Suh (Department of Mathematics, Yeungnam University) ;
  • Lee, Il-Yong (Division of Mathematical Sciences, Kyungsung University)
  • Published : 2003.05.01

Abstract

We are devoted to dealing with the conformal theory of a Rizza manifold with a generalized Finsler metric $G_{ij}$ (x,y) and a new conformal invariant non-linear connection $M^{i}$ $_{j}$ (x,y) constructed from the generalized Cern's non-linear connection $N^{i}$ $_{j}$ (x,y) and almost complex structure $f^{i}$ $_{j}$ (x). First, we find a conformal invariant connection ( $M_{j}$ $^{i}$ $_{k}$ , $M^{i}$ $_{j}$ , $C_{j}$ $^{i}$ $_{k}$ ) and conformal invariant tensors. Next, the nearly Kaehlerian (G, M)-structures under conformal change in a Rizza manifold are investigate.

References

  1. Publ. Math. Debrecen v.54 Conformal flatness of complex Finsler structures T.Aikou
  2. The theory of sprays and Finsler spaces with applications in physics and biology P.L.Antonelli;R.S.Ingarden;M.Matsumoto
  3. An. Stiint. Univ. Al. I. Cuza Iasi, Sect. 1 a Mat. N. S. v.30 no.1 On generalized Finsler spaces M.Hashiguchi
  4. Riv. Mat. Univ. Parma v.14 no.4 Finsler metrics on almost complex manifolds Y.Ichijyo
  5. J. Math. Tokushima Univ. v.25 Conformally flat Finsler structures Y.Ichijyo
  6. Research Bull. Tokushima Bunri Univ. v.57 Kaehlerian manifolds of Chern type Y.Ichijyo
  7. Research Bull. Tokushima Bunri Univ. v.59 On flatness of generalized Finsler manifolds and kaehlerian Finsler manifolds of Chern type Y.Ichijyo
  8. Foundations of Finsler geometry and special Finsler spaces M.Matsumoto
  9. Tensor N. S. v.52 On nearly Kaehlerian Finsler manifolds H.S.Park
  10. Proceedings of the 35th Symposium on Finsler Geometry Conformal changes of Rizza manifolds H.S.Park
  11. Atti Acad. Naz. Lincei Rend. v.33 Strutture di Fibsler sulle varita compressea G.B.Rizza
  12. Riv. Mat. Univ. Parma v.4 no.2 Strutture di Fibsler di tipo quasi Hermitiano G.B.Rizza
  13. Differential geometry on complex and almost complex spaces K.Yano