DOI QR코드

DOI QR Code

Tuning of a Laterally Driven Microresonator using Electrostatic Comb Step Array

계단식 정전빗살구조물을 이용한 수평구동형 미소공진기의 주파수 조정

  • 이기방 (한국과학기술원 디지털나노구동연구단) ;
  • 서영호 (한국과학기술원 디지털나노구동연구단) ;
  • 조영호 (한국과학기술원 디지털나노구동연구단)
  • Published : 2003.08.01

Abstract

We present a new post-fabrication frequency tuning method for laterally driven electrostatic microresonators using a DC-biased electrostatic comb array of linearly varied finger-length. The electrostatic tuning force and the equivalent stiffness, adjusted by the DC-biased tuning-comb array, have been formulated as functions of geometry and DC tuning voltage. A set of frequency-turnable microresonators has been designed and fabricated by 4-mask surface-micromachining process. The resonant frequency of the microfabricated microresonator has been measured for a varying tuning voltage at the reduced pressure of 1 torr. The maximum 3.3% reduction of the resonant frequency is achieved at the tuning voltage increase of 20V.

Keywords

Frequency Tuning;Tunable Microresonator;Electrostatic Microactuator;Electrostatic Force;Stiffness Control

References

  1. Adams, S.G., Bertsch, F.M., Shaw, K.A., Hartwell, P.G., MacDonald, N.C. and Moon, F.C., 1995, 'Capacitance base tunable micromechanical resonators,' Proc. 8th Inter. Conf. Solid-State Sensors and Actuators (Transducers '95), Stockholm, pp. 438-441 https://doi.org/10.1109/SENSOR.1995.717233
  2. Maxwell solver, Electrostatic Package V.4.20, Ansoft Corp., Pittsburgh, PA, U.S.A.
  3. Wang, K. and Nguyen, C.T.-C., 1997, 'High-order microelectromechanical electronic filters,' Proc. Micro Electro Mechanical Systems, Nagoya, Japan, pp. 25-30
  4. Sene, D.E., Grantham, J.W., Bright, V.M. and Comtois, J.H., 1996, 'Development and characterization of micro-mechanical gratings for optical modulation,' Proc. Micro Electro Mechanical Systems, San Diego, CA, U.S.A., pp. 222-227 https://doi.org/10.1109/MEMSYS.1996.493984
  5. Yao, J.J. and MacDonald, N.C., 1996, 'A micromachined, single-crystal silicon, tunable resonator,' J. Micromech. Microeng., 6, pp. 257-264 https://doi.org/10.1088/0960-1317/5/3/009
  6. Hierold, C., Hildebrandt, A., Naher, U. Scheiter, T., Mensching, B., Steger, M. and Tielert, R., 1996, 'A pure CMOS surface micromachined integrated accelerometer,' Proc. Micro Electro Mechanical Systems, pp. 174-179 https://doi.org/10.1109/MEMSYS.1996.493849
  7. Lee, K.B., Yoon, J.-B., Kang, M.-S., Cho, Y.-H., Youn, S.-K., and Kim, C.-H., 1996, 'A surface-micromachined tunable microgyroscope,' IEEE Conference on Emerging Technologies and Factory Automation (ETFA-96), Hawaii, pp. 498-502 https://doi.org/10.1109/ETFA.1996.573900
  8. Roessig, T., Pisano, A.P., Howe, R.T., 1995, 'Surface-micromachined resonant force sensor,' Proc. the ASME Dynamic Systems and Control Division, pp. 871-876
  9. Habibi, M., Lueder, E., Kallfass, T., Horst, D., 1995, 'A surface micromachined capacitive absolute pressure sensor array on a glass substrate,' Sensors and Actuators, A46-47, pp. 125-128 https://doi.org/10.1016/0924-4247(94)00874-4
  10. Langdon, R.M., 'Resonant sensors-a review,' 1985, J Phys E: Sci Instrum, 18, pp. 103-115 https://doi.org/10.1088/0022-3735/18/2/002
  11. Tang, W.C., Nguyen, C.T.-C. and Howe, R.T. 1989, 'Laterally driven polysilicon resonant microstructures,' Sensors and Actuators, A20, pp. 25-32 https://doi.org/10.1016/0250-6874(89)87098-2