200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion
기법을 이용한 채널 왜곡의 보상 특성

Compensation Characteristics of Distorted Channels in 200 Gbps
WDM Systems using Mid-Span Spectral Inversion Method

이 성렬
Seong-Real Lee

요 약
광섬유의 색 분산과 비선형 효과에 의해 왜곡된 채널 신호를 보상하기 위한 방법으로 고비선형 분산 천이 광섬유의 광 위상 공액기를 이용한 것 외에 평균 강도 근사 MSSI(Mid-Span Spectral Inversion)를 제작한 채널 전송을 40 Gbps의 5-채널 WDM 시스템의 시뮬레이션을 통하여 채널 각각의 MSSI 보상 특성을 다양한 광섬유 분산 계수에 따라 분석해 보았다. 채널별 보상 특성의 분석은 1 dB 기준 눈 멜림 패널티, 수신단에서의 비트 오류율 특성, 10⁻⁹ BER에서의 채널 간과 위 패널티 등을 이용했다. 시스템 전송 갈리, 광섬유의 분산 계수, 광 위상 공액기 광 압축, 광 위상 공액기의 WDM 신호 파장에 대한 공액과 변환 효율 등에 관계하여 광 위상 공액기를 중심으로 한 첫 번째 전송 링크에서의 신호 평균 전력과 두 번째 전송 링크에서의 공액과 평균 전력을 동일하게 만드는 랜드 광 전력을 적절히 선택하면 고비선형 분산 천이 광섬유가 MSSI 보상을 통한 광역적 WDM 시스템을 위한 광 위상 공액기에서의 비선형 매질로 매우 적합하다는 것을 확인할 수 있었다.

Abstract

In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Kerr effect in 1,000 km 200 Gbps (5 x 40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber (HNL-DSF) optical phase conjugator (OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty (EOP), bit error rate (BER) characteristics and power penalty of 10⁻⁹ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.

Key words: Mid-Span Spectral Inversion (MSSI), Chromatic Dispersion, Self Phase Modulation (SPM), Highly Nonlinear Dispersion Shifted Fiber (HNL-DSF) Optical Phase Conjugator (OPC), Wideband WDM System

I. 서 론
광섬유의 색 분산과 비선형 효과 (Kerr effect)에
기인하는 광 필스의 왜곡을 보상하는 여러 가지 기
발 중 광 전송 링크 중간에 광 위상 공학기(OPS: Optical Phase Conjugator)를 사용하는 MSI(Mid-Span Spectral Inversion) 기법은 비교적 높은 전력 신호들을 보상할 수 있다는 장점을 갖고 있다. 또한 MSI에서 표준한 전력에 대한 비선형 효과의 비대칭성 때문에 기존된 자기 위상 변조(SPM: Self Phase Modulation)에 의한 앰프 보상에서도의 한계는 OPS의 중심으로 한 번 끼운 전송 링크와 두 번째 전송 링크에서의 경로 평균 전력에 가까운 경로 평균 간격(MDI: Path-Averaged Intensity Approximation)을 적용함으로써 해결될 수 있다.

PAIA MSI 기법을 중심에 파장 분할 다중(WDM: Wavelength Division Multiplexing) 시스템에 적용하여 모든 WDM 채널의 고장점 전송을 구현하는데 있어 가장 중요한 요소로는 OPS에서 4-광과 혼합(FWM: Four Wave Mixing)에 의해 신호파와 공광파(conjugated wave)로 변환시키는 비선형 파장이 전송세트의 EDF(A: Erbium Doped Fiber Amplifier)의 대역에 준하는 광수축이어야 하고 전송 거리, 광섬유 분산 계수 등의 시스템 파라미터와 관련한 모든 채널에 대해 최상의 보상을 얻을 수 있는 OPS에서의 랜프 광 전력의 선택 등이 있다.

우선 OPS의 비선형 메커니즘 전동적인 분산 천이 광섬유(DF: Dispersion Shifted Fiber) 대신에 고비선형 분산 천이 광섬유(HNLS: Highly Nonlinear Dispersion Shifted Fiber)를 사용함으로써 광대역의 목적을 달성할 수 있고, 이 HNLS OPS에 이론과 사례가 있는 PAIA MSI를 채널 해독 보상 기법으로 제작한 WDM 시스템에서 HNLS-DF OPS를 중심으로 한 두 광 전송 링크에서의 신호파 경로 평균 전력과 공광파 경로 평균 전력이 간단히도 펌프 광 전력
을 선택할 때 광대역 WDM 채널의 고장점 장거리 전송이 가능하다는 것을 앞선 연구들에 의해 확인하였다. 때문에 광 전송 거리 1,000 킬로미터의 채널 비트율은 40Gbps WDM에서 HNLS-DF OPS의 광

광 파장에 관계없이 움직임이 18.3 dbm으로

설정하면 최대 전력 7 dbm까지의 in-band 채널
(OPC의 3 dB 대역폭 내에 포함되는 파장을 갖는 채
널) 전체에 대해 1 db 이내의 파워 페널티(power penalty)로 양호히 보상 전송하는 것을 확인하였 다. 또한 OPC의 광 파장이 HNLS-DF의 영 분

광 경로(ZDW: Zero Dispersion Wavelength)에 가까

울수록 MSI 보상을 통해 광대역 WDM 채널 신호

들이 동일한 성능과 폴질로 전송되는 것도 확인하

였다.

본 논문에서는 앞선 연구의 결과를 바탕으로 설

계된 광 전송 거리 1,000 km의 채널 비트율 40 Gbps

의 5-채널 갈등 표준 정도(WDM/Intensity Modulation/ Direct Detection) WDM 시스템의 시뮬레이션을 통하여 OPC의 광란 경로가 각각 154.95 nm과 1548.3 nm이고, 광란 경로가 각각 18.2 nm, 18.5 dbm, 18.7 dbm인 경우 in-band 채널 각각의 MSI 보상 특성을 다양한 광섬유 분산 계수를 고려하여 분석해 보았다. PAIA MSI 기법을 통한 채널별 보상 특성 문헌은 1 dB 뉴얼 해독 단계(EEP: Eye Opening Penalty)를 기준으로 하였고, 비등 에러율(BER: Bit Error Rate) 등 특정 환경과 10−5 BER에서의 채널간 파워 페널티 도출을 통해 HNLS-DF OPS를 갖는 경우 평균 간격 근사 MSI 기법이 광대역 WDM 시스템에 적용될 수 있는 가능성을 확인해 보았다.

Ⅱ. 경로 평균 간격 근사 MSI 기법을 채택한 200 Gbps WDM 시스템 모델

그림 1은 비트율이 40 Gbps인 채널을 송신부에서 각각 다른 반반파 파장으로 갈등 표준 후 하나의

전송로로 전송시키는 MSI 보상 기법을 채택한 5-

채널 WDM 전송 시스템의 전체적인 구조를 나타낸 것이다. 그림 1에서 OPT는 양 송신신단부 OPT까지

의 첫 번째 전송 링크를 전파해온 신호 파선과 비선

형 효과의 영향을 받아 해목된 광 신호파를 위상 공

광파로 변환시킨다. 이렇게 변환된 공광파를 나머지

전송 링크의 반을 통해 수신시키면 광 신호의 해목

을 보상할 수 있다. WDM 시스템의 /번째 신호파의 포락선 피아 아래

방정식을 따라 전파한다.로.
표 1. 시뮬레이션 파라미터

<table>
<thead>
<tr>
<th>파라미터</th>
<th>기호 및 파라미터값</th>
</tr>
</thead>
<tbody>
<tr>
<td>송신부</td>
<td></td>
</tr>
<tr>
<td>비트율</td>
<td>R=200 Gbps(=5×40 Gbps)</td>
</tr>
<tr>
<td>페러미터</td>
<td>NRZ super-Gaussian (m=2)</td>
</tr>
<tr>
<td>비트 패턴</td>
<td>PRBS 2^11 (128 bits)</td>
</tr>
<tr>
<td>주파수 합(Chip)</td>
<td>0</td>
</tr>
<tr>
<td>형태</td>
<td>conventional DSF</td>
</tr>
<tr>
<td>손실 계수</td>
<td>α=α=0.2 dB/km</td>
</tr>
<tr>
<td>전체 전송 길이</td>
<td>1,000 km (L=L=500 km)</td>
</tr>
<tr>
<td>분산 계수</td>
<td>0.1 ps/nm/km, 0.4 ps/nm/km, 1.6 ps/nm/km, 3.2 ps/nm/km</td>
</tr>
<tr>
<td>전신형 과정 계수</td>
<td>n2=2.36×10^{-26} km^2/W</td>
</tr>
<tr>
<td>유 효 코어 직경</td>
<td>Aeff=50 μm^2</td>
</tr>
<tr>
<td>EDFA의 개수</td>
<td>20</td>
</tr>
<tr>
<td>EDFA 격자</td>
<td>h=50 km</td>
</tr>
<tr>
<td>수신부</td>
<td></td>
</tr>
<tr>
<td>형태</td>
<td>PIN-PD with EDFA pre-amp</td>
</tr>
<tr>
<td>EDFA 잡음 지수</td>
<td>5 dB</td>
</tr>
<tr>
<td>광학적 대역폭</td>
<td>1 nm</td>
</tr>
<tr>
<td>수신 대역폭</td>
<td>0.65×R_s</td>
</tr>
</tbody>
</table>

\[
\frac{\partial A_i}{\partial z} = -\frac{\alpha}{2} A_i - i \beta z \frac{\partial^2 A_i}{\partial T^2} + 6 \gamma z \frac{\partial A_i}{\partial T} + i r A_i A_j A_j A_j + 2 i r A_i A_i A_i A_i \tag{1}
\]

여기서 \(\alpha \)는 광섬유의 손실 계수, \(\lambda_j \)는 \(j \)-번째 채널 신호 파장, \(\beta_g \)는 광섬유의 싱글 파라미터, \(\beta_s \)는 3차 싱글 파라미터, \(T \)는 전신형 계수, \(r \)는 비정형 계수, \(\gamma \)는 비정형 계수, \(T = \frac{\gamma}{\alpha} \)이다. 싱 (1)의 좌변의 마지막 두 번째 항은 SPM 을, 첫 번째 항은 \(k \)-번째 채널의 XPM을 각각 나타낸다. 본 논문에서는 시뮬레이션 과정을 간략화 시키기 위하여 싱 (1)의 우변의 마지막 항을 무시하고 표 1의 파라미터를 적용하여 단계 분할 플라마 (SSF: Split-Step Fourier) 방법을 이용하여 수치적으로 분석하였다. 또한 본 논문에서 FWM 효과에 의한 채널 간 더욱 (crosstalk)를 억제하기 위하여 F. Forghei 등에 의해 제안된 WDM 채널 간 간섭을 분리할 수 있게 분합하려는 방법을 적용하였다. 본 논문에서 사용한 OPC의 다양한 예제 과장에 대한 WDM 채널 신호 과장과 채널 파장 표 2에 각각 나타냈다.

수신부는 음향 및 전장에서 필터링되어 입력되는 채널 신호를 EDFA를 통해 증폭한 후 PIN 다이오드로 광 신호 전력을 전류로 변환하고 필스 작동 필터(pulse shaping filter), 클록 재생기(clock recovery), 판별 회로(decision circuit)를 거쳐 '0'과 '1'의 전기적 신호를 검출하는 직렬 검출 방식의 수신기로 모델링하였다.

전송로는 데이터 속도가 추가될 수록 채널의 수는 줄어들지 않아, 이 때 발생하는 신호간의 간섭 (ISI: Intersymbol Interference)은 BER 특성을 평가하기 위해서 반드시 포함되어야 한다. 본 논문에서는 이를 위하여 R. J. Nuyts에 의해 제안된 높 스팟

\[
\text{BER} = \frac{1}{4} \text{erfc}\left(\sqrt{2} \left(1 - c_{s\nu} \right) \frac{1 - c_{\sigma} - \tau I_{\text{sat}}}{\sigma^2} \right) + \frac{1}{4} \text{erfc}\left(\sqrt{2} \left(\frac{\tau - c_{\sigma}}{\sigma^2} \right) I_{\text{sat}} \right)
\]

(2)

여기서 \(c_{s\nu}\)와 \(c_{\sigma}\)는 각각 'I' 신호와 'O' 신호에 대한 눈 감김 정도이고, \(\sigma\)와 \(\tau\)는 각각 'I' 신호와 'O' 신호에 대한 잡음의 표준 편차이다. 그리고 \(\tau\)는 수신기 사절 화로에서의 판별 용량(decision threshold level)이다.

식 (2)를 통해 BER 계산에 필요한 수신기에서의 광 신호 대 잡음비(OSNR: Optical Signal to Noise Ratio)와 각 수신 잡음은 참고문헌 [10]에 유도한 식들을 사용했다.

III. HNL-DSF를 이용한 광 위상 공액기

그림 1의 WDM 시스템에서 광대역 채널 보상을 위해서는 OPC가 시스템 전체 대역폭에 걸쳐 광산 행렬 특성을 가지어야 한다. 전통적인 DSF 대신에 적은 분산 기울기((dispersion slope)를 갖는 HNL-DSF를 사용함으로써 광산 행렬 특성을 가진다. 만일 HNL-DSF의 이용으로 낮은 대역에 걸쳐 각각 다른 파장의 신호들이 갈라서 거의 비슷한 변환 효율(conversion efficiency)의 공극과로 변환된다면 WDM 시스템에 HNL-DSF OPC가 적용될 수 있을 것이다.

그림 2는 HNL-DSF를 이용한 OPC의 구조를 나타낸 것이다. 또한 표 3은 본 논문에서 사용한 HNL-DSF OPC 파라미터 값을 나타낸 것이다. OPC의 미설령 단계에서 사용된 FWM 광의 전력과 입력 신호 전력의 비를 변환 효율로 정의한다. 참고문헌 [6]에서 표 3에 요약된 파라미터를 사용하여 변환 효율을 계산하였다. 제한값과 최대 변환 효율 값은 0.18 dB이고, HNL-DSF OPC의 3-dB 대역 폭은 몬트 광 파장이 1549.5 nm인 경우 34 nm (1532.5~1566.5 nm), 1548.3 nm인 경우 18 nm (1539.5~1557.5 nm)로 얻었다.

표 4의 각 채널 광 파장을 참고문헌 [6]의 결과를 토대로 확인해 보면 OPC 몬트 광 파장이 각각 1549.5 nm, 1548.3 nm, 1547.5 nm, 1546.5 nm, 1545.5 nm이 되어야 한다.

表 3. HNL-DSF OPC 파라미터
Table 3. HNL-DSF OPC parameters

<table>
<thead>
<tr>
<th>파라미터</th>
<th>기호</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNL-DSF 순설</td>
<td>(\alpha)</td>
<td>0.61 dB/km</td>
</tr>
<tr>
<td>HNL-DSF 비선형 계수</td>
<td>(\rho_\sigma)</td>
<td>20.4 W(^{-1}) km(^{-1})</td>
</tr>
<tr>
<td>몬트 광 전력</td>
<td>(P_p)</td>
<td>18.2 dBm, 18.5 dBm</td>
</tr>
<tr>
<td>몬트 광 파장</td>
<td>(\lambda_p)</td>
<td>1549.5 nm, 1548.3 nm</td>
</tr>
<tr>
<td>HNL-DSF 분산 기울기</td>
<td>(dD/d\lambda)</td>
<td>0.032 ps/nm(^2)/km</td>
</tr>
</tbody>
</table>

表 4. OPC의 최대 변환 효율과 채널 변환 효율의 차이 값
Table 4. The difference of maximum conversion efficiency and channel conversion efficiency.

<table>
<thead>
<tr>
<th>(\lambda_p)</th>
<th>채널 1</th>
<th>채널 2</th>
<th>채널 3</th>
<th>채널 4</th>
<th>채널 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1549.5 nm</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0.03 dB</td>
<td>0.05 dB</td>
<td></td>
</tr>
<tr>
<td>1548.3 nm</td>
<td>0 dB</td>
<td>0.05 dB</td>
<td>0.2 dB</td>
<td>0.6 dB</td>
<td>1.1 dB</td>
</tr>
</tbody>
</table>
nm, 1548.3 nm인 경우 모든 WDM 채널간 OPC의 3-dB 더덕폭 내에 포함되는 채널(in-band 채널이라 하자)이 된다. 하지만 표 4와 같이 WDM 각각의 채널은 신호 파장이 다르기 때문에 OPC 꼭대 꺾 파장에 대해 각각 다른 변환 활력을 갖는다.

IV. 시뮬레이션 결과 및 검토

채널 왜곡 보상을 위해 HNL-DSF OPC를 이용한 MSSI 기법을 채택한 1,000 km의 채널 비트율 40 Gbps의 5-채널 WDM 시스템에서의 채널 보상 정도를 시뮬레이션을 통해 확인·분석하는 과정은 다음과 같다.

먼저 앞선 연구의 결과, 즉 전송 거리 1,000 km의 WDM 시스템의 모든 채널에 대해 최상의 보상을 얻을 수 있는 OPC 꼭대 꺾 파장인 18.5 dBm에서 WDM 꼭대 꺾 꼭대의 분산 공수 값을 각각 0.1, 0.4, 1.6, 3.2 ps/nm/km 등으로, 그리고 OPC의 꼭대 파장을 1549.5 nm가 1548.3 nm로 설정한 경우에 대해 입력 전력 변화에 따른 채널별 높 일된 패널티를 확인·분석하였다.

그린 후 비교적 높은 분산 공수인 1.6 ps/nm/km와 3.2 ps/nm/km의 꼭대 꺾으로 구성된 각각의 시스템에서 OPC를 통한 전력 변화(Power Conversion Ratio: 그림 1에서 $P_0(0)/P_0(0)$로 정의)가 18.5 dBm보다 낮게 나타나는 18.2 dBm과 높게 나타나는 18.7 dBm의 꼭대 전력으로, 그리고 각각의 경우 꼭대 파장을 1549.5 nm와 1548.3 nm로 달리 설정했을 때의 입력 전력 변화에 따른 채널별 높 일된 패널티를 확인하고 이들 결과를 상호 분석, 또는 OPC 꼭대 전력이 18.5 dBm인 경우의 결과와도 비교·분석하였다.

마지막으로 HNL-DSF OPC를 이용한 MSSI 기법이 장거리 대용량 WDM 시스템의 전체 채널 왜곡 보상 기법으로 유용한 지를 채널별 수신 감도의 관점에서 살펴보기 위하여 OPC의 꼭대 전력이 18.2 dBm인 경우 다양한 꼭대 꺾 파장에서의 수신 신호 전력 변화에 따른 BER 특성을 도출·분석해 보았다.

그림 4는 HNL-DSF OPC 꼭대 파장이 1549.5 nm,
전력이 18.5 dBm인 필프 광을 사용한 경우 다양한 광섬유 분산 계수에서 입력 신호와 전력 변화에 따라 관찰된 엑셀 패널티 특성을 나타낸 것이다. 우선 비교적 적은 분산 계수 (D = 0.1 ~ 1.6 ps/nm/km)의 광 전송 링크를 전파하는 WDM 채널들은 MSSI 기법을 통해 동일하거나 매우 비슷한 품질로 보상되는 것을 알 수 있다. 그러나 광섬유의 분산 계수가 증가할수록 광 필프가 점차 빨리 떨어지게 되므로 광 신호 순서가 각각 그로 인한 광 신호의 SPM에 의한 위상 변화가 광 필프가 전파하면서 겪게 되는 위상 변화를 상쇄시킬 수 없을 정도로 줄어들면, 전파 방향으로 전달되는 것이 증가되기 때문에 1 dB EOP 품질을 유지할 수 있는 채널의 최대 송신 전력이 점차 감소하는 것을 알 수 있다.

또한 광섬유의 분산 계수가 대역폭으로 큰 WDM 시스템에서는 채널별 보상 경도에 차이가 생겨서 (D = 3.2 ps/nm/km에서 1 dB EOP 기준 채널 간 패널티가 1.2 dB 정도이다) 광섬유의 ZDW에서 먼 파장을 갖는 채널일수록 보상 효과가 줄어드는 것을 확인할 수 있다. 이는 광 필프의 내부 위상 변화를 상쇄시킬 수 있는 광 필프의 SPM에 의한 위상 변화량이 큰 분산 계수의 광섬유에서 더욱 감소되었고, 더욱이 다른 채널에 비해 OPC에서의 변환 효과가 낮은 채널 4와 채널 5의 DSF2로 가입시하는 공약과 전력이 대역폭으로 크게 감소되었기 때문이다.

그림 5는 HNL-DSF OPC에 파장이 1548.3 nm, 전력이 18.5 dBm인 필프 광을 사용한 경우 다양한 광섬유 분산 계수에서 입력 신호와 전력 변화에 따라 관찰된 엑셀 패널티 특성을 나타낸 것이다. 광섬유의 분산 계수가 증가할수록 채널간 전체 패널티가 증가하는 것을 알 수 있다. 그러나 광섬유의 분산 계수에 상관없이 OPC에서의 변환 효과를 동일하다는 비슷하게 갖는 채널 1, 채널 2, 채널 3은 거의 비슷한 품질로 보상된다.

그림 6은 HNL-DSF OPC의 광파장이 1549.5 nm로 고정되어 있는 반면에 필프 전력을 18.2 dBm과

Fig. 4. Eye opening penalty as a function of the input signal light power for the various fiber dispersion coefficients in the case of 1548.3 nm pump wavelength and 18.5 dBm pump power in OPC.
그림 5. 랜프 파장이 1549.5 nm이고 랜프 전력과 광섬유의 분산 계수에 변화가 없는 경우에서 입력 신호 전력 변화에 따른 눈 열림 패널티
Fig. 5. Eye opening penalty as a function of the input signal light power for the various fiber dispersion coefficients and pump power in the case of 1549.5 nm pump wavelength in OPC.

그림 6. 랜프 파장이 1548.3 nm이고 랜프 전력과 광섬유의 분산 계수에 변화가 없는 경우에서 신호 전력 변화에 따른 눈 열림 패널티
Fig. 6. Eye opening penalty as a function of the input signal light power for the various fiber dispersion coefficients and pump power in the case of 1548.3 nm pump wavelength in OPC.
18.7 dBm의 두 가지 경우 각각에서의 1.6 ps/nm/km
와 3.2 ps/nm/km의 광섬유 본산 계수를 갖는 MSSI
WDM 시스템에서의 입력 신호와 전력 변화에 따른
눈 엽리 페널더를 나타낸 것이다. 우선 OPC의 평균
전력이 18.5 dBm에서의 WDM 채널 보상 정도를
나타낸 그림 4(c)와 비교해보면, D=1.6 ps/nm/km의
WDM 시스템에서 평균 전력이 18.2 dBm인 경우와
18.7 dBm인 경우 1 dB EOP가 되는 송신 전력이
각각 약 1 dBm, 2 dBm 정도 감소하는 것을 알 수
있다.
그리고 D=3.2 ps/nm/km의 시스템에서도 OPC의
평형 전력 변화에 따라 비슷한 결과가 나타난을 알
수 있다. 그러나 OPC 평형 전력이 각각 18.2 dBm,
18.5 dBm인 경우의 WDM 채널 전체 파워 페널더
가 1.5 dB인 반면, OPC 평형 전력이 18.7 dBm인 경
우에서는 전체 페널더가 0.3 dB 정도로 전체 WDM
채널에서 MSSI 기법을 통한 보상이 균등하게 있어
지는 것을 확인할 수 있다.
그림 7은 HNL-DSF OPC의 평형 파장은 1549.5
nm에서 1548.3 nm로 변화를 주고 나머지 파라미터
를 그림 6의 경우와 동일하게 한 MSSI WDM 시스
템에서의 입력 신호와 전력 변화에 따른 눈 엽리 페
널더를 나타낸 것이다. 우선, 그림 6과는 달리 1 dB
EOP 파워 페널더는 OPC 평형 전력과 전송 링크의
본산 계수 값에 따라 2~4 dB까지 비교적 크게 나
타난다. 이는 HNL-DSF OPC의 평형 파장이 ZDW
에서 더욱 범어진 파장을 사용하므로써 채널마다의
변환 효율이 표 4에서와 같이 차이가 나기 때문
이다. 즉 OPC에서 추출된 각 채널의 광파 전력의
크기가 각각 다른 변환 효율에 의해 달라지게 되고,
결국 DSF2에서 SPM에 의한 위상 변동의 크기가
채널마다 달라지기 때문이다.
여기서 한 가지 주목해야 할 결과는 광섬유 본산
계수가 1.6 ps/nm/km인 경우에서 OPC의 평형 전력
이 18.2 dBm이면 OPC에서의 변환 효율이 낮은 채
널임수록 보상 품질이 열어지지만 OPC의 평형 전력
이 18.7 dBm인 경우에는 보상 품질이 더욱 좋아
진다는 것이다. 그러나 광섬유 본산 계수가 3.2
ps/nm/km, OPC의 평형 전력이 18.7 dBm인 경우에
서 낮은 효율은 변환하는 채널 4와 채널 5의 보상
품질은 다른 채널에 비해 저하된다. 달리 말해서
OPC의 평형 전력이 18.2 dBm에서 18.7 dBm으로
증가함에 따라 OPC의 변환 효율이 높은 채널들의
보상 정도는 상대적으로 감소하는 반면에 OPC의
변환 효율이 낮은, 즉 다른 채널에 비해 높은 전력
이 낮은 채널들의 보상 정도는 개선된다.
이것은 OPC의 평형 전력이 OPC를 중심으로 한
첫 번째 전송 링크에서의 신호 정전 전력보다 두 번
째 전송 링크에서의 공백과 평균 전력을 크게 만드
200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성

는 값 이상으로 증가하면 OPC에서의 변환 효율이 높은 WDM 채널들 채널 1, 채널 2, 채널 3은 공
애가 변화 시 전력 증가가 생기고 이 약간 전력들
이 두 번째 전송 링크를 교차하면서 경계는 SPM
의 균일이 되기 때문에 보상 효율이 저하되는 것이
라고 할 수 있다. 반면에 공택과 변환 효율이 낮은
채널 신호들은 낮은 링크 전력과의 결합에 의해 첫
번화 전송 링크에서의 신호 평균 전력의 크기에 준
하는 공택과 증가 변환되었기 때문에 상대적인 보
상 효율이 개선되는 것이라고 할 수 있다.

이 결과는 그림 6(d)에서 MSSI 기법을 통한
WDM 전체 채널 파워 페달러가 0.3 dB로 다른 경우
에 비해 크게 개선되는 것에 이유이기도 하다.

그림 8는 OPC의 링크 전력이 18.2 dBm인 경우 다
양한 파와 과장에서의 MSSI 기법을 통해 보상될 수
신 신호 전력 변화에 따른 BER 특성을 나타낸 것이
다. 우선 앞서 언급한 파와 과장 특성에서의 결과와 마
찬가지로 10^{-9} BER 기준 WDM 채널 파워 페달러가
OPC의 링크 전력이 1549.5 nm, 1548.3 nm, 1547 nm
인 경우 각각 0, 0.2, 0.4 dB로 링크 파와
OPC의 ZDW에서 많이 줄여서 증가하는 것을 알 수
있다. 그러나 최대 파와 페달러가 0.4 dB 정도로 덜
어진다는 것은 HNL-DSF OPC를 이용한 MSSI 기법
이 매우 낮은 광전 신호를 갖는 모든 in-band 채널의
보상에 매우 유용하다는 것을 의미하는 것이다.

V. 결 론

지금까지 장장업의 세 분산과 비선형 효과에 의
해 왜곡된 채널 신호를 보상하기 위한 방법으로 다
양한 링크 과장과 전력의 갖는 HNL-DSF OPC를
이용한 PAIA MSSI를 설계한 총 전송 거리 1,000km
의 채널 비율은 40 Gbps의 5-채널 IM/DD WDM 시스
템의 시뮬레이션을 통하여 in-band 채널 각각의
MSSI 보상 특성을 다양한 장장업 분산 계수를 고려
하여 분석해 보았다.

먼저 OPC를 중심으로 한 첫 번째 전송 링크에서
의 신호 평균 전력과 두 번째 전송 링크에서의 공택
과 평균 전력의 동일하게 만드는 링크 전력인 18.5
dBm의 OPC를 이용한 시스템에서 OPC 링크 파와
ZDW에 근접한 1549.5 nm인 경우 비교적 낮은 분산
계수의 광 전송 링크를 설계하는 WDM 채널들은
MSSI 기법을 통해 동일하거나 매우 비슷한 품질로
보상되는 것을 알 수 있었다. 또한 OPC 파와
1548.3 nm인 경우 광섬유의 분산 계수가 증가할수록
채널 간 전체 과파 페달러가 증가하지만 OPC에서의
변환 효율을 동일하거나 비슷하게 갖는 채널들은 장
장업의 분산 계수가 상관없이 매우 동일한 품질로
보상되는 것을 확인할 수 있었다.

그리고 OPC의 링크 전력은 OPC를 중심으로 한
첫 번째 전송 링크로서의 신호 평균 전력보다 두 번
째 전송 링크로서의 공택과 전체 전력의 크기에 많
는 약 10%로 증가하므로 OPC가 아닌 OPC의 변화 효율이
높은 WDM 채널들은 공택과 변화 비 변형이 생성된 전력
성능과 그로 인한 SPM에 의한 영역, 신호 대부분
 Bere 보상 효율이 저하되는 반면에 공택과 변화 효
율이 낮은 채널 신호들은 낮은 링크 전력과의 결합
에 의해 첫 번째 전송 링크로서의 신호 평균 전력의
크기에 준하는 공택과 증가 변환되었기 때문에 보
상 효율이 개선된다는 것을 확인할 수 있었다.

즉 시스템 전송 갑, 장장업의 분산 계수, OPC
망 파와, OPC에서의 WDM 신호 파와에 따른
공택과 변환 효율 등에 관계하여 OPC를 중심으로
한 첫 번째 전송 링크로서의 신호 평균 전력과 두 번
째 전송 망크로서의 공택과 평균 전력의 동일하게
만드는 링크 파와 전력을 적절히 선택함은 HNL-DSF
가 MSSI 보상을 통한 광배역 WDM 시스템의 OPC
에서의 광배역 비선형 매질로 매우 적합하다는 것을
확인할 수 있었다.

또한 다양한 OPC 링크 파와로서의 MSSI 기법을
통해 보상된 수신 신호 전력 변화에 따른 BER 특성
에 대한 고찰 결과 OPC의 링크 파와가 ZDW에서 멀
어지더라도 10^{-9} BER 기준 채널 간 과파 페달러가
1 dB 이내로 얻어질 수 있을 만큼 HNL-DSF OPC를
이용한 MSSI 기법이 모든 in-band 채널의 보상에 매우
유용한다는 것을 확인할 수 있었다.

앞으로의 연구에서는 본 논문에서 얻은 최적 파
라미터를 바탕으로 한 WDM 시스템에서 XPM 뿐만
아니라 EDFA의 촉매 자전 방출(ASE: Accumulated
Spontaneous Emission) 집합 등의 장기적 대응광 전
송에 미치는 영향과 이의 개선을 위해 PAIA MSSI
기법을 재해석한 경우의 보상 특성을 고찰해 보도록
하겠다.

