DOI QR코드

DOI QR Code

ON THE GENERALIZED SET-VALUED MIXED VARIATIONAL INEQUALITIES

Zhao, Yali;Liu, Zeqing;Kang, Shin-Min

  • Published : 2003.07.01

Abstract

In this paper, we introduce and study a new class of the generalized set-valued mixed variational inequalities. Using the resolvent operator technique, we construct a new iterative algorithm for solving this class of the generalized set-valued mixed variational inequalities. We prove the existence of solutions for the generalized set-valued mixed variational inequalities and the convergence of the iterative sequences generated by the algorithm.

Keywords

generalized set-valued mixed variational inequality;resolvent operator;iterative algorithm

References

  1. Appl. Math. Lett. v.13 An iterative algorithm for generalized nonlinear variational inclusions R.Ahmad;Q.H.Ansari
  2. Appl. Math. Lett. v.8 General strongly nonlinear variational inequalities for multifunctions J.H.Zhang
  3. J. Math. Anal. Appl. v.149 Strongly nonlinear quasivariational inequalities A.H.Siddiqi;Q.H.Ansari https://doi.org/10.1016/0022-247X(90)90054-J
  4. Pacific J. Math. v.30 Multi-valued contractive mapping S.B.Nadler https://doi.org/10.2140/pjm.1969.30.475
  5. Nonlinear functional analysis and its applications III E.Zeidler
  6. Computers Math. Appl. v.40 Generalized nonlinear mixed quasi-variational inequalities N.J.Huang;M.R.Bai;Y.J.Cho;S.M.Kang https://doi.org/10.1016/S0898-1221(00)00154-1
  7. J. Math. Anal. Appl. v.166 General strongly nonlinear variationl inequalities A.H.Siddiqi https://doi.org/10.1016/0022-247X(92)90305-W
  8. Appl. Math. Lett. v.9 Generalized nonlinear variational inclusions with noncompact valued mappings N.J.Huang
  9. J. Math. Anal. Appl. v.220 Set-valued resolvent equation and mixed variational inequalities M.A.Noor;K.I.Noor;T.M.Rassias https://doi.org/10.1006/jmaa.1997.5893

Cited by

  1. Existence of solutions for generalized nonlinear mixed variational-like inequalities in Banach spaces vol.2006, 2006, https://doi.org/10.1155/IJMMS/2006/36278