• Don, Hadwin (Department of Mathematics University of New Hampshire Durham) ;
  • Llolsten, Kaonga (Department of Mathematics University of New Hampshire Durham) ;
  • Ben, Mathes (Department of Mathematics University of New Hampshire Durham)
  • Published : 2003.09.01


By forming completions of families of noncommutative polynomials, we define a notion of noncommutative continuous function and locally bounded Borel function that give a noncommutative analogue of the functional calculus for elements of commutative $C^{*}$-algebras and von Neumann algebras. These notions give a precise meaning to $C^{*}$-algebras defined by generator and relations and we show how they relate to many parts of operator and operator algebra theory.


functional calculus;$C^{*}$-algebra;von Neumann algebra;noncommutative continuous function;stable relations;parts of operators


  1. Linear spans of unitary and similarity orbits of a Hilbert space operator K.A.Davidson;L.W.Marcoux
  2. Mem. Amer. Math. Soc. v.6 no.171 Charting the operator terrain J.Ernest
  3. Trans. Amer. Math. Soc. v.244 Closures of direct sums of classes of operators D.W.Hadwin
  4. Summa Brasil. Math. v.2 Normal dilations and extensions of operators P.R.Halmos
  5. Pacific J. Math. v.172 Stable relations Ⅱ. Corona semiprojectivity and dimension-drop $C^{*}$-algebras T.A.Loring
  6. Amer. Math. Soc. Providence. v.8 Lifting solutions to perturbing problems in $C^{*}$-algebras. Fields Institude Monographs T.A.Loring
  7. Proc. Amer. Math. Soc. $C^{*}$-algebras that are only weakly semiprojective T.A.Loring
  8. Rev. Roumaine Math. Pures Appl. v.21 A non-commulative Weyl-von Neumann theorem D.Voiculescu
  9. Grad. Texts in Math. no.39 An invitation to $C^{*}$-algebras W.Arveson
  10. Acta. Sci. Math.(Szeged) v.25 Numerical ranges and normal dilations P.R.Halmos
  11. J. Funct. Anal. v.112 $C^{*}$-algebras generated by stable relations T.A.Loring
  12. Math. Scand. v.73 Projective $C^{*}$-algebras T.A.Loring
  13. Proc. Amer. math. Soc. v.4 On a class of operators A.Brown
  14. Illinois J. Math. v.22 Parts of operators on Hilbert space A.Brown; C.K.Fong;D.W.Hadwin
  15. Indiana Univ. Math. J. v.27 Continuous functions of operators: a functional calculus D.W.Hadwin
  16. J. Funct. Anal. v.127 Lifting algebraic elements in $C^{*}$-algebras D.W.Hadwin
  17. Indiana Univ. Math. J. v.23 Normal limits of nilpotent operators D.Herrero
  18. Trans. Amer. Math. Soc. v.244 An asymptoic double commutant theorem for $C^{*}$-algebras D.W.Hadwin
  19. Trans. Amer. Math. Soc. v.266 Non-separable approximate equivalence D.W.Hadwin
  20. Subnormal operators and the kaplansky density theorem D.W.Hadwin

Cited by

  1. A projective C-algebra related to K-theory vol.254, pp.12, 2008,
  2. From Matrix to Operator Inequalities vol.55, pp.02, 2012,