• Kim, Won-Kyu (Department of Mathematics Education Chungbuk National University) ;
  • Ding, Xie-Ping (Department of Mathematics Sichuan Normal University)
  • Published : 2003.09.01


In this paper, we will introduce the general concepts of generalized multiobjective game, generalized weight Nash equilibria and generalized Pareto equilibria. Next using the fixed point theorems due to Idzik [5] and Kim-Tan [6] , we shall prove the existence theorems of generalized weight Nash equilibria under general hypotheses. And as applications of generalized weight Nash equilibria, we shall prove the existence of generalized Pareto equilibria in non-compact generalized multiobjective game.


generalized multiobjective game;generalized weight Nash equilibrium;generalized Pareto equilibrium


  1. Bull. Austral. Math. Soc. v.46 A variational inequality and its application W.K.Kim;K.K.Tan
  2. Nonlinear Anal. TMA v.29 Generalized quasi-variational inequalities and some applications G.X.Z.Yuan;E.Tarafdar
  3. Appl. Math. Lett. v.4 An existence theorem of a Pareto equilibrium S.Y.Wang
  4. Comput. Math. Appl. v.39 Existence of Pareto equilibria for constrined multiobjective game in H-space X.P.Ding
  5. J. Optim. Theory Appl. v.79 Existence of a pareto equilibrium S.Y.Wang
  6. J. Optim.Theory Appl. v.27 Second-order game problems : Decision dynamics in gaming phenomena P.L.Yu
  7. Mathematical Methods of Game and Economic Theory J.P.Aubin
  8. J. Optim. Theory Appl. v.63 Concepts in two-person multicriteria games D.Chose;U.R.Prasad
  9. Proc. Amer. Math. Soc. v.104 Almost fixed point theorems A.Idzik
  10. Method of Operation Research v.60 Pareto equilibrium in multiobjective games P.E.Borm;S.T.Tijs;J. Van Den Aarssen
  11. Tecnniques for Multiobjective Decision Making in Systems Management F.Szidarovszky;M.E.Gershon;L.Duckstein
  12. Comput. Math. Appl. v.39 Constrined multiobjective games in general topological space X.P.Ding
  13. Comput. Math. Appl. v.35 The study of Pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods J.Yu;G.X.Z.Yuan
  14. Theory and Decision v.8 Domination structures and multicriteria problems in N-person games K.Bergstresser;P.L.Yu
  15. Nihonkai Math. J v.1 A characterization of generalized saddle points of vector-valued functions via scalarization T.Tanaka

Cited by

  1. On Convex Total Bounded Sets in the Space of Measurable Functions vol.2012, 2012,
  2. Compact Browder maps and equilibria of abstract economies vol.26, pp.1-2, 2008,