The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (II) - Life Prediction and Failure Mechanism -

냉간 가공된 316L 스테인리스 강의 저주기 피로 거동에 미치는 온도의 영향 (II) - 수명예측 및 파손 기구 -

  • 홍성구 (한국과학기술원 기계공학과) ;
  • 윤삼손 (한국과학기술원 기계공학과) ;
  • 이순복 (한국과학기술원 기계공학과)
  • Published : 2003.10.01


Tensile and low cycle fatigue tests on prior cold worked 3l6L stainless steel were carried out at various temperatures ftom room temperature to 650$^{\circ}C$. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM.


Low Cycle Fatigue;Life Prediction;Cold Work;316L Stainless Steel


  1. Driver, J.H., Gorier, C., Belrami, C., Vidan, P., Amzallag, C., 1988, ASTM STP 942, p. 438
  2. Wareing, J., 1983, Fatigue at High Temperature, ed. R.P.Skelton, Applied Science Publishers, Barking, p. 142
  3. Ostergren, W. J., 1976, ASME-MPC symposium on creep/fatigue interaction, MPC-3, New York
  4. Hong, S. G., Lee, S. B., 2002, KSME Trans. A, 26(3), pp. 521-527
  5. Landgraf, R. W., 1970, in 'Achievement of High Fatigue Resistance in Metals and Alloys,' ASTM STP 467, pp. 3-36
  6. Coffin, L.F., Jr., 1954, ASME Trans., 76, p. 931
  7. O. H. Basquin, 1910, 'The Exponential Law of Endurance Tests,' Am. Soc. Test. Mater. Proc., 10, pp. 625-630
  8. Morrow, J.D., 1964, ASTM STP 378, p. 45
  9. Bressers, J., 1987, In High Temperature Alloys, Their Exploitable Potential, ed. J. B. Marriott, M. Merz, J. Nihoul and J. Ward. Elsevier Applied Science, Amsterdam, pp. 385-410
  10. Valsan, M., Sastry, D. H., Bhanu Sankara Rao, K., Mannan S. L., 1995, Metall. Trans., 25A, pp. 159
  11. Srinivasan, V. S., Sandhya, R., Bhanu Sankara Rao, K., Mannan, S. L., Raghavan, K. S., 1991, Int. J. Fat., 13(6), pp. 471
  12. Srinivasan, V. S., Valsan, M., Sandhya, R., K. Bhanu Sankara Rao, Mannan, S. L., Sastry, D. H., 1999, Int. J. Fat., 21, pp. 11-21
  13. Kim, D. W., Ryu, U. S. and Hong, J. H., 2000, The Korean Institute of Metals and Materials Trans., 13(8), pp. 36-42
  14. Kanazawa, K., Yamaguchi, K., Nishijima, S., 1988, ASTM STP 942, pp. 519-530
  15. J. Nihoul and J. Ward. Elsevier Applied Science In High Temperature Alloys,Their Exploitable Potential Bressers,J.;J.B.Marriott(ed.);M.Merz(ed.)