Delay Guaranteed Fair Queueing (DGFF) in Multimedia Wireless Packet Networks

Hyunho Yang*

요 약

공정규제는 자원이 노드들 간에 공유되는 유선 및 무선 멀티미디어망에서 주요한 주제 중 하나이다. 대부분의 공정규제 알고리즘은 GPS 알고리즘에 근거하고 있으며 공정성을 강조하는 반면, 방에서 멀티미디어 률 서비스를 지원하기 위해서는 필요한 저장된 지연시간 보장 측면이 간과하고 있다. 이 논문에서는 새로운 공정규제 방안인 지연 보장 공정규제 (DGFF, Delay Guaranteed Fair Queueing)를 제안한다. 이 방식은 무선 패킷망에서 멀티미디어 서비스를 제공하기 위하여 각 flow 별 지연시간 요구에 맞추어 제한된 지연시간 을 보장한다.

ABSTRACT

Fair queueing has been an important issue in the multimedia networks where resources are shared among nodes both wired and wireless. In most fair queueing algorithms, based on the generalized processor sharing (GPS), emphasizes fairness guarantee while overlooking bounded delay guarantee which is critical to support multimedia services in the networks. In this paper, we propose a new fair queueing scheme, delay guaranteed fair queueing (DGFF), which guarantees bounded delay of flows according to their individual delay requirements for multimedia services in the wireless packet networks.

키워드

Fair queueing, Bounded delay, Quality of Service (QoS), Multimedia network.

1. Introduction

The wireless technologies are envisioned to support multimedia services, both error-sensitive and delay-sensitive applications, over the bandwidth-constrained wireless medium. With this vision in mind, the issue of providing fair and bounded delay channel access among multiple contending hosts over a scarce and shared wireless channel has come to the fore. Fair queueing has been a popular paradigm to achieve this goal in both wireline and packet cellular networking environments [1].

Among them a series of algorithms are based on generalized processor sharing (GPS) [2] approach. WFQ [3], also called pack-by packet GPS (PGPS), self clocked fair queueing (SCFQ) [4], start time fair queueing (SFQ) [5]. These
algorithms guarantee the fairness according to
the relative weight of flows. Many of wireless
fair queueing algorithms have been proposed as
a variation of these algorithms.

In [5], the authors reviewed typical GPS
based fair queueing algorithms and proposed a
new simple and deadline guaranteeing fair
queueing algorithm, i.e., start-time fair queueing
(SFQ). Their proposed scheme implemented
virtual time function less complex by adopting
start tag of currently transmitting packet as
virtual time value. In addition, SFQ allocates
bandwidth fairly regardless of admission control
as well as variation in server rate. Even though
this scheme improves delay guarantee and
fairness bound, the authors overlooked the
service differentiation according to the flow
characteristics, e.g., guaranteed bandwidth
service or best effort service, which is critical
to support multiple heterogeneous sessions both
realtime and non realtime traffics.

A delay and data decoupled fair queueing
(D-FQ) was presented in [6], to mitigate the
inherent drawback of GPS based fair queueing
algorithm i.e., the inability to deliver
independent control over delay and bandwidth
guarantees, which results in inflexible
bandwidth management and inefficient link
utilization [7]. Their approach for independent
control for delay and data rate is to separate
scheduling algorithms for real time and
non-real time flows. Although, this scheme not
only guarantees the delay deadline of real time
flows but also improves the performance of
non-real time flows in terms of packet delay, it
should be pointed out that the computational
complexity increased due to the dual scheduling
architecture specifically for the explicit delay
guarantee (EDG) algorithm which support real
time flows.

In this paper, we propose a new fair queueing
scheme i.e., delay guaranteed fair queueing
(DGFQ), guaranteeing bounded delay of
multimedia services. Our model is basically a
GPS based fair queueing model with some
modifications to guarantee bounded delay. In
detail, we classified the flows into two
categories, i.e., delay guaranteed (DG) class and
non-delay guaranteed (NG) class by introducing
additional weight factor to apply differentiated
tagging operation for each classes, i.e., set a
little earlier start tag to DG class flows than
NG class flows. With this policy we can get
better delay performance for DG class at the
same fairness guarantee without serious
increase in computational complexity.

The rest of this paper is organized as follows.
Section 2 is devoted to describe the network
model being considered. In Section 3, we
describe detailed architecture and algorithm of
delay guaranteed fair queueing (DFGQ). Then
in Section 4, the performance of proposed
scheme is evaluated. Finally, we concluded our
work in Section 5.

II. Network Model

For the purpose of this work, we basically
consider wireless networks supporting multimedia
services with guaranteed delay performance. We
also expect that this scheme performs similarly
for the wired network.

In detail, we consider packet-cellular network
with a high-speed wired backbone and small,
partially overlapping, shared channel wireless
cells. Each cell is served by a base station,
which performs the scheduling of packet
transmissions for the cell. Neighboring cells are
assumed to transmit on different logical
channels. Every mobile host in a cell can
communicate with the base station, though it is
not required for any two mobile hosts to be within range of each other. Each flow of packets are identified by a certain flow index. To concentrate our work on the enhancement of the delay guarantee performance, we excluded channel error to leave as a future work. Thus, we do not make any explicit mathematical assumptions about the error model in our framework. It should be noted that in our model, we do not consider the scenario where a wireless channel is shared across several neighboring cells, which is more complicated and introduces the hidden/exposed station problems [8].

III. Delay Guaranteed Fair Queueing (DGFO)

In this section, we propose a new fair queueing algorithm, delay guaranteed fair queueing (DGFO), which provides differentiated bounded delay for each traffic classes having different service requirements. This proposal includes algorithm description, analytical properties and implementation in error free channel.

3.1. Algorithm Descriptions

Our proposed model, delay guaranteed fair queueing (DGFO) basically adopts start-time fair queueing (SFQ) algorithm proposed in [5]. In DGFO, as is in the SFQ, two tags i.e., a start tag and a finish tag, are associated with each packet. However, unlike WFQ and SCFQ, packets are scheduled in the increasing order of the start tags of the packets. Furthermore, \(u(t) \) is defined as the start tag of the packet in service at time \(t \). Finally, we assume that, in SFQ, WFQ or DGFO scheme, there is a certain interval of time in which all flows are scheduled at least once, we call it scheduling interval.

All flows are classified into a number of classes according to their delay bound requirements. The simplest and basic classification is to make two classes, one for delay guaranteed (DG) flows and the rest for non delay guaranteed (NG) flows. In our scheme, we introduce the service differentiation coefficient, \(\alpha \ (0 < \alpha \leq 1) \), to handle each flow classes differently. When \(\alpha = 1 \), which is the case for NG class, our proposed scheme is identical to SFQ. By varying \(\alpha \), we can customize delay bound for individual flows i.e., adjust the relative service order of each flows in a scheduling interval.

The complete algorithm is defined as follows.

i) On arrival, \(k^{th} \) packet of flow \(f \), \(p_f^k \), is stamped with start tag \(S(p_f^k) \), computed as

\[
S(p_f^k) = \max\{A(p_f^k), F(p_f^{k-1})\}, \quad k \geq 1
\]

where \(F(p_f^k) \), the finish tag of packet, \(p_f^k \) is defined as

\[
F(p_f^k) = S(p_f^k) + \frac{i_f^{k}}{\phi_f}
\]

where \(F(p_f^0) = 0 \) and \(\phi_f \) is the weight of flow \(f \) and \(\alpha \ (0 < \alpha \leq 1) \) is the service differentiation coefficient for flow \(f \). The value of \(\alpha \) is 1 for NG class, or appropriate value for DG class.

ii) Initially the system virtual time is 0. During a busy period, the system virtual time at time \(t \). \(u(t) \), is defined to be equal to the start tag of the packet in service at time \(t \). At the end of a busy period, \(u(t) \) is set to the maximum of finish tag assigned to any packets.
that have been serviced by then.

iii) Packets are serviced in the increasing order of the start tags: ties are broken arbitrarily.

As shown in Fig. 1, in DGFQ, the next packet is scheduled after $\alpha \frac{t^f}{\phi_f}$, while in SFQ scheme, the next packets of each on going flow is scheduled after $\frac{t^f}{\phi_f}$. As mentioned before, the range of α is $0 < \alpha \leq 1$, the scheduling time difference i.e., $(1-\alpha)\frac{t^f}{\phi_f}$, is limited to one packet transmission duration. It is evident from (1) and (2) that the differentiated service time (virtual start time of a packet) can not go before system virtual time of the packet arrival instant. Due to this property, DGFQ maintain the fairness between each flows. On the other hand, it is still another issue to compensate lagged service in the error-prone channel environment, thus exclude from our considerations. Finally, for the computational complexity of computing virtual time $v(t)$, two schemes are identical to the complexity of $O(\log N)$ per packet, where N is the number of flows in the system.

3.2. Analytical Properties of DGFQ

3.2.1. Fairness Guarantee

To derive fairness guarantee of DGFQ, we need to prove a bound on

$$\left| \frac{W_{f(t_1,t_2)}}{\phi_f} - \frac{W_{g(t_1,t_2)}}{\phi_g} \right|$$

for any interval in which both flows f and g are backlogged. We achieve this objective by establishing a lower and an upper bound on $W_{f(t_1,t_2)}$ and $W_{g(t_1,t_2)}$ in Lemmas 1 and 2, respectively.

Lemma 1. If flow f is backlogged throughout the interval $[t_1,t_2]$, then in an DGFQ server

$$\phi_f (v_2 - v_1) - t^f_{\text{max}} \leq W_{f(t_1,t_2)}$$

(3)

where $v_1 = v(t_1)$ and $v_2 = v(t_2)$.

Lemma 2. In an DGFQ server, during any interval $[t_1,t_2]$,

$$W_{g(t_1,t_2)} \leq \phi_g (v_2 - v_1) + t^g_{\text{max}}$$

(4)

where $v_1 = v(t_1)$ and $v_2 = v(t_2)$.

Since unfairness between two flows in any interval is maximum when one flow receives maximum possible service and the other minimum service, Theorem 1 follows directly from Lemmas 1 and 2.
Theorem 1. For any interval \([t_1, t_2]\) in which flows \(f\) and \(g\) are backlogged during the entire interval, the difference in the service received by two flows at an DGFQ server is given as

\[
\left| \frac{W_{\phi_f}(t_1, t_2)}{\phi_f} - \frac{W_{\phi_g}(t_1, t_2)}{\phi_g} \right| \leq \frac{t_{\text{max}}^f}{\phi_f} + \frac{t_{\text{max}}^g}{\phi_g}
\]

(5)

Theorem 1 demonstrates that DGFQ guarantees the same fairness as in SFQ [5]. This is intuitively evident that DGFQ only adjusts the start tag, hence the scheduling order, in a set of backlogged flows to be served in a given time interval \([t_1, t_2]\), to insure earlier service for delay guaranteed flow.

3.2.2. Delay Guarantee

On the contrary to the fairness guarantee, DGFQ shows better performance than SFQ, for the delay guaranteed (DG) flows such as real time videos. Let \(r_f^k\) be the rate assigned to packet \(p_f^k\) length of \(l_f^k\). Then finish tag of packet \(p_f^k\), \(F(p_f^k)\) is defined as

\[
F(p_f^k) = S(p_f^k) + a_r \frac{l_f^k}{r_f^k}, \quad k \geq 1
\]

(6)

Start tag of a packet and the system virtual time are defined as before.

As in SFQ, DGFQ provides deadline guarantees when the server capacity is not exceeded. To drive the deadline guarantee, let us formalize the meaning of the term "capacity is not exceeded." Let rate function for flow \(f\) at virtual time \(v\), denoted by \(R_f(v)\), be defined as the rate assigned to the packet that has start tag less than \(v\) and finish tag greater than \(v\). Formally

\[
R_f(v) = \begin{cases} \ r_f^k & \text{if } \exists k \in \mathbb{N} : S(p_f^k) \leq v < F(p_f^k) \\ 0 & \text{otherwise} \end{cases}
\]

Let \(B\) be the set of flows served by the server. Then the capacity of a server with average rate \(C\) is not exceeded if

\[
\sum_{n \in B} R_n(v) \leq C \quad v \geq 0
\]

(7)

To derive the delay guarantee of DGFQ servers, we first derive a bound on the work done by an DGFQ server in the virtual time interval \([v_1, v_2]\) in Lemma 3.

Lemma 3. If the server with parameter \(C\) is not exceeded, then the aggregate length of packets that have start tag at least \(v_1\) and at most \(v_2\), and are served in the same busy period, denoted by \(\mathcal{W}(v_1, v_2)\), is given by

\[
\mathcal{W}(v_1, v_2) \leq C \cdot \sum_{k=1}^{n-1} \frac{l_f^k + l_f^k}{r_f^k} + \sum_{n \in B \cap f} \frac{l_f^k}{r_f^k}
\]

whenever \(v_1 = S(p_f^k, r_f^k)\), \(v_2 = S(p_f^k, r_f^k)\), and

\[
v_2 - v_1 = \sum_{k-1}^{n-1} \frac{l_f^k}{r_f^k}.
\]

For brevity, we will denote

\[
\theta_f = \sum_{n \in B \cap f} \frac{l_f^k}{C} + \frac{l_f^k}{C}.
\]
Further, we can define \(A_* (p_j^k, r_j^k) \), the expected arrival time of packet \(p_j^k \) that has been assigned rate \(r_j^k \) as

\[
A_* (p_j^k, r_j^k) = \max \{ A(p_j^k), A_* (p_j^{k-1}, r_j^{k-1}) + \alpha \cdot \frac{l_j^{k-1}}{r_j^{k-1}} \}
\]

where \(A_* (p_j^0, r_j^0) = -\infty \).

Theorem 2 defines the delay guarantee of DGFQ servers.

Theorem 2. If the capacity of DGFQ server with parameter \(C \) is not exceed, then the departure time of packet \(p_j^k \) \(D_{DGFQ} \) satisfies the following inequality.

\[
D_{DGFQ}(p_j^k) \leq A_* (p_j^k, r_j^k) + \theta_j^k
\]

To compare this with SFQ, we can rewrite (10) as follows

\[
D_{DGFQ}(p_j^k) \leq A_* (p_j^{k-1}, r_j^{k-1}) + \alpha \cdot \frac{l_j^{k-1}}{r_j^{k-1}} + \theta_j^k
\]

and the departure time of a packet at a SFQ server, given in [5] is

\[
D_{SFQ}(p_j^k) \leq A_* (p_j^{k-1}, r_j^{k-1}) + \frac{l_j^{k-1}}{r_j^{k-1}} + \theta_j^k
\]

The difference of (11) and (12) is

\[
(1 - \alpha) \cdot \frac{l_j^{k-1}}{r_j^{k-1}}
\]

where \(0 < \alpha \leq 1 \). It is clear from the comparison above that, in DGFQ, the departure time of packet \(p_j^k \) is earlier by (13) than in SFQ. Hence, the delay bound is more tightly provided than in SFQ.

IV. Performance Evaluation

4.1. Simulation Environments

We used simulations method to evaluate our proposed algorithm. For the simulation, we assumed 2Mbps wireless channel which is typical capacity of current wireless mobile networks. We implemented DGFQ scheme in error free channel model to concentrate our evaluation work on the key features of proposed scheme, i.e., delay guaranteed scheduling. In the simulation, we selected average delay, maximum delay and throughput as the performance measures.

Detail definitions of these measure are explained in the following Section 4.3. Moreover, we compared these measures for the following three fair queueing schemes: SFQ, DGFQ, D-FQ[6]. SFQ also regarded as a special case of DFGQ where the service differentiation coefficient \(\alpha = 1.0 \). For the case of D-FQ is simulated to get the reference value of the delay performance because it is explicitly guarantee delay deadline with somewhat costly complex system architecture with computational complexity of \(O(N_{AW} N_{RT}) \)

where \(N_{AW} \) is the number of allocation windows and \(N_{RT} \) is the number of realtime flows [6], and it also meaningful to compare the performance of our simple scheme with computational complexity of \(O(\log N) \) where \(N \) is the number of flows in the system. Simulation performed for 1000 seconds, further, repeated 20 times to get more refined results.
To evaluate the performance of DGFQ, we choose throughput, average delay and maximum delay as performance measures. The definitions and simulation results are given in the following.

4.3.1. Throughput

We used throughput as a fairness measure, which is total transmitted packets during the whole simulation duration, say, 1000 seconds. As described in previous Section III, basically DGFQ does rearrange the service order for the packet from a set of flows according to the individual flow characteristics.

This is the only difference from SFQ. Thus conceptually, there is no changes from the results of SFQ, as far as throughput is concerned. Again, fairness among flows is guaranteed analytically by (5). Therefore, as shown in the Figure 1, it is natural to conclude that there is no difference in throughput for respective flow classes, i.e., voice, video and data.

4.3.2. Average Delay

In our work average delay is defined as the average time interval between the arrival and departure of a packet for a certain time duration. To compare the average delay of three

Table 1. Summary of Traffic Sources.

<table>
<thead>
<tr>
<th>Model</th>
<th>Voice</th>
<th>Video</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>ON/OFF</td>
<td>MPEG</td>
<td>Poisson</td>
</tr>
<tr>
<td>Delay Deadline</td>
<td>20 ms</td>
<td>41.7 ms</td>
<td>-</td>
</tr>
<tr>
<td>Data Rate</td>
<td>32 kbps</td>
<td>114 kbps</td>
<td>300 kbps</td>
</tr>
<tr>
<td>Relative Weight</td>
<td>0.0016</td>
<td>0.067</td>
<td>0.15</td>
</tr>
</tbody>
</table>

source, where there are three types of frame, i.e., I, B and P frames. Each frame size is determined by a Lognormal distribution with a specified mean and standard deviation. A video source generates 24 frames per second. Data flow is modelled by Poisson arrival with truncated Pareto distributed burst size. Table 1 shows the traffic model parameters used in this simulation, where voice and video traffic are assumed to be real time flow while data traffic is assumed to be non real time flow.
schemes, we choose 3 classes of 6 realtime video flows, then assign value for each classes, 1.0 (for SFQ), 0.8 and 0.6 respectively.

As shown in the Figure 3, the service differentiation coefficient \(\alpha \) is the key parameter to control delay performance. When \(\alpha=1 \), our proposed scheme is identical to the start time fair queueing (SFQ) scheme. With varying \(\alpha \), we can handle classes of flows, having different delay bound requirements, maintaining the same fairness guarantees of flows. From the figure, our new scheme outperforms D-FQ and SFQ, independent of network load conditions. Specifically, with lower value of \(\alpha \), we can precisely control average delay requirement. Naturally, average delay increases for all scheme with increasing network load.

4.3.3. Maximum Delay

The maximum delay is another critical performance measure for real time multimedia flows. We define maximum delay as the maximum time interval between the arrival and departure of a packet in the system in a certain duration of time, say, simulation duration. We can get the results simultaneously with average delay from the same simulation. From Figure 4, we can conclude that maximum delay could be also controllable with our new scheme, though the performance is not as good as for the average delay case. Specifically, as far as for the low network load conditions are concerned, say below 60 % of full network load, maximum delay performance is comparable to that of D-FQ. On the contrary, for relative high load conditions, say above 80 % of full network load, the maximum delay performance of DGFQ get worse with increasing network load. However, in either case, DGFQ controls the maximum delay more tightly than SFQ algorithm does.

For the numerical details, the target performance measure, i.e., maximum delay bound of 50ms, typical value for the realtime video traffic, is satisfied by DGFQ for the network load up to 60 %, when \(\alpha=0.6 \), while for SFQ, which is \(\alpha=1.0 \) case, meets the target only for the low load condition, say, below 30 % of full network load. D-FQ remains in the satisfied condition all the way by virtue of complex explicit delay guarantee (EDG) algorithm. It is noteworthy that our proposed scheme could manage maximum delay guarantee by simpler mechanism than D FQ, except for the extremely high load conditions.

V. Conclusions

We proposed a new delay guaranteed fair queueing scheme, DGFQ, guaranteeing bounded delay of multimedia services with simpler algorithm than other delay guaranteed queueing algorithm SFQ [5] and D-FQ [6]. From the simulated results, our proposed scheme outperforms for average delay than other schemes in comparison. Proposed scheme performs well for maximum delay bounds except for the high
network load conditions with no degradation of fairness guarantees. With some modifications and performance tuning, our proposed DGFQ scheme will be a good alternative for the fair queueing algorithm guaranteeing QoS, in the context of delay, for the multimedia wireless packet networks.

Finally, we just consider about error-free wireless channel which is too idealistic to apply our work in the practical systems. So, much more work should be done for the error-prone wireless channel case as a future work.

References

Yang Hyunho

1980년 광운대학교 전자공학과 (공학사)
1990년 광운대학교 대학원 전자공학과 (공학석사)
2003년 광주과학기술원 정보통신공학과 (공학박사)
1989년 ~ 1990년 삼성 SDX 주식회사 Network Engineer
1991년 ~ 1997년 포스테라 주식회사
POSCO 광양제철소 Network Operation Manager 1997
년 ~ 현재 순천향대 컴퓨터정보과학과 교수
주관성분식 무선멀티미디어 통신, Ad Hoc 네트워크

924