Characteristics of Cobalt Silicide by Various Film Structures

다양한 박막층을 채용한 코발트실리사이드의 물성

  • Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2003.05.01


The $CoSi_2$ process is widely employed in a salicide as well as an ohmic layer process. In this experiment, we investigated the characteristics of $CoSi_2$ films by combinations of I-type (TiN 100$\AA$/Co 150$\AA$), II-type(TiN 100$\AA$/Co 150$\AA$/Ti 50$\AA$), III-type(Ti 100$\AA$/Co 150$\AA$/Ti 50$\AA$), and IV-type(Ti 100$\AA$/Co 150$\AA$/Ti 100$\AA$). Sheet resistances of $CoSi_2$ show the lowest resistance with 2.9 $\Omega$/sq. in a TiN/Co condition and much higher resistances in conditions simultaneously applying Ti capping layers and Ti interlayers. Though we couldn't observe a $CoSi_2$roughness dependence on the film stacks from RMS values, Ti capping layers turned into 78∼94$\AA$ thick TiN layers of (200) preferred orientation at $N_2$ambient. In addition, Ti interlayers helped to form the epitaxial $CoSi_2$with (200) preferred orientation and ternary compounds of Co-Ti-Si. We propose that film structures of II-type and III-type may be appropriate in the salicide process and the ohmic layer process from the viewpoint of Co diffusion kinetics and the CoSi$_2$epitaxy.


  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S .Redkar, Appl. Phys. Lett., 78, 3091 (2001)
  2. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000)
  3. C. Detavernier, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000)
  4. C. M. Osburn, J. Y. Tsai and J. Sun, J. Electron Material, 25, 1725 (1996)
  5. J. A. Kittl and Q. Z. Hong, Thin Solid Films, 320, 110 (1998)
  6. A. E. Morgan, E. K. Broadbent, K. N. Ritz, D. K. Sadana and B. J. Burow, J. Appl. Phys., 64, 344 (1988)
  7. C. Y. Ting, M. Wittmer, S. S. Iyer and S. B. Brodsky, J. Electrochem. Soc., 131, 2934 (1984)
  8. G. J. P.Krooshof, F. H. P. M. Habraken, W. F. van der Weg, L. Van den Hovw, K. Maex and R. F. De Keersmaecker, J. Appl. Phys., 63, 5110 (1988)
  9. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21(4), 155 (2000)
  10. H. Fang, M. C. Oztu, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146(11), 4240 (1999)
  11. Y. S. Ahn and O. S. Song, J. Mater. Res., 11, 71 (2001)
  12. R.T.Tung, MRS Symp. Proc., 427, 481 (1996)
  13. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58, 1308 (1991)
  14. Y. P. Chen, G. A. Dixit, J. P. Lu, W. Y. Hsu, A. J. Konecni, J. D. Luttmer and R. H. Havemann, Thin Solid Films, 320, 73 (1998)
  15. D. K. Sohn, J. S. Park, B. H. Lee, J. U. Bae, J. S. Byun and J. J. Kim, Appl. Phys. Lett., 73, 2302 (1998)
  16. D. Mangelinck, J. Cardenas, F. M. d'Heurle, B. G. Svensson and P. Gas, J. Appl. Phys., 86, 4908 (1999)
  17. A. Lauwers, Q. F. Wang, B. Deweerdt and K. Maex, Applied Surface Science, 91, 12 (1995)
  18. G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69, 3498 (1996)
  19. T. S. Kang and J. H. Je, Appl. Phys. Lett., 80, 1361 (2002)
  20. J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin and D. Vanhoenacker, J. Electrochem. Soc., 144(7), 2437 (1997)
  21. R. T. Tung, Applied Surface Science, 117/118, 268 (1997)
  22. H. Zhang, J. Poole, R. Eller and M. Keefe, J. Vac. Sci. Technol., A17, 1904 (1999)
  23. D. P. Adams, S. M. Yalisove and D. J. Eaglesham, J. Appl. Phys., 76, 5190 (1994)
  24. T. S. Kang, J. H. Je, G. B. Kim, H. K. Baik and S. Lee, J. Vac. Sci. Technol., B18, 1953 (2000)

Cited by

  1. Properties of iridium-inserted nickel silicides by thermal annealing of the Ni/Ir bilayer on silicon and polysilicon substrates vol.13, pp.3, 2007,
  2. Properties of nickel-cobalt composite silicides by thermal annealing of Ni1−xCox (x=0.2, 0.5, and 0.8) alloy thin films on silicon and polysilicon substrates vol.13, pp.3, 2007,