DOI QR코드

DOI QR Code

Characteristics of Cobalt Silicide by Various Film Structures

다양한 박막층을 채용한 코발트실리사이드의 물성

  • Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2003.05.01

Abstract

The $CoSi_2$ process is widely employed in a salicide as well as an ohmic layer process. In this experiment, we investigated the characteristics of $CoSi_2$ films by combinations of I-type (TiN 100$\AA$/Co 150$\AA$), II-type(TiN 100$\AA$/Co 150$\AA$/Ti 50$\AA$), III-type(Ti 100$\AA$/Co 150$\AA$/Ti 50$\AA$), and IV-type(Ti 100$\AA$/Co 150$\AA$/Ti 100$\AA$). Sheet resistances of $CoSi_2$ show the lowest resistance with 2.9 $\Omega$/sq. in a TiN/Co condition and much higher resistances in conditions simultaneously applying Ti capping layers and Ti interlayers. Though we couldn't observe a $CoSi_2$roughness dependence on the film stacks from RMS values, Ti capping layers turned into 78∼94$\AA$ thick TiN layers of (200) preferred orientation at $N_2$ambient. In addition, Ti interlayers helped to form the epitaxial $CoSi_2$with (200) preferred orientation and ternary compounds of Co-Ti-Si. We propose that film structures of II-type and III-type may be appropriate in the salicide process and the ohmic layer process from the viewpoint of Co diffusion kinetics and the CoSi$_2$epitaxy.

References

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S .Redkar, Appl. Phys. Lett., 78, 3091 (2001) https://doi.org/10.1063/1.1372621
  2. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. C. Detavernier, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  4. C. M. Osburn, J. Y. Tsai and J. Sun, J. Electron Material, 25, 1725 (1996) https://doi.org/10.1007/s11664-996-0028-x
  5. J. A. Kittl and Q. Z. Hong, Thin Solid Films, 320, 110 (1998) https://doi.org/10.1016/S0040-6090(97)01069-9
  6. A. E. Morgan, E. K. Broadbent, K. N. Ritz, D. K. Sadana and B. J. Burow, J. Appl. Phys., 64, 344 (1988) https://doi.org/10.1063/1.341434
  7. C. Y. Ting, M. Wittmer, S. S. Iyer and S. B. Brodsky, J. Electrochem. Soc., 131, 2934 (1984) https://doi.org/10.1149/1.2115445
  8. G. J. P.Krooshof, F. H. P. M. Habraken, W. F. van der Weg, L. Van den Hovw, K. Maex and R. F. De Keersmaecker, J. Appl. Phys., 63, 5110 (1988) https://doi.org/10.1063/1.340411
  9. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21(4), 155 (2000) https://doi.org/10.1109/55.830966
  10. H. Fang, M. C. Oztu, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146(11), 4240 (1999) https://doi.org/10.1149/1.1392621
  11. Y. S. Ahn and O. S. Song, J. Mater. Res., 11, 71 (2001)
  12. R.T.Tung, MRS Symp. Proc., 427, 481 (1996)
  13. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58, 1308 (1991) https://doi.org/10.1063/1.104345
  14. Y. P. Chen, G. A. Dixit, J. P. Lu, W. Y. Hsu, A. J. Konecni, J. D. Luttmer and R. H. Havemann, Thin Solid Films, 320, 73 (1998) https://doi.org/10.1016/S0040-6090(97)01068-7
  15. D. K. Sohn, J. S. Park, B. H. Lee, J. U. Bae, J. S. Byun and J. J. Kim, Appl. Phys. Lett., 73, 2302 (1998) https://doi.org/10.1063/1.121804
  16. D. Mangelinck, J. Cardenas, F. M. d'Heurle, B. G. Svensson and P. Gas, J. Appl. Phys., 86, 4908 (1999) https://doi.org/10.1063/1.371459
  17. A. Lauwers, Q. F. Wang, B. Deweerdt and K. Maex, Applied Surface Science, 91, 12 (1995) https://doi.org/10.1016/0169-4332(95)00087-9
  18. G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69, 3498 (1996) https://doi.org/10.1063/1.117224
  19. T. S. Kang and J. H. Je, Appl. Phys. Lett., 80, 1361 (2002) https://doi.org/10.1063/1.1455149
  20. J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin and D. Vanhoenacker, J. Electrochem. Soc., 144(7), 2437 (1997) https://doi.org/10.1149/1.1837833
  21. R. T. Tung, Applied Surface Science, 117/118, 268 (1997) https://doi.org/10.1016/S0169-4332(97)80092-X
  22. H. Zhang, J. Poole, R. Eller and M. Keefe, J. Vac. Sci. Technol., A17, 1904 (1999) https://doi.org/10.1116/1.581702
  23. D. P. Adams, S. M. Yalisove and D. J. Eaglesham, J. Appl. Phys., 76, 5190 (1994) https://doi.org/10.1063/1.357237
  24. T. S. Kang, J. H. Je, G. B. Kim, H. K. Baik and S. Lee, J. Vac. Sci. Technol., B18, 1953 (2000) https://doi.org/10.1116/1.1305275

Cited by

  1. Properties of iridium-inserted nickel silicides by thermal annealing of the Ni/Ir bilayer on silicon and polysilicon substrates vol.13, pp.3, 2007, https://doi.org/10.1007/BF03027810
  2. Properties of nickel-cobalt composite silicides by thermal annealing of Ni1−xCox (x=0.2, 0.5, and 0.8) alloy thin films on silicon and polysilicon substrates vol.13, pp.3, 2007, https://doi.org/10.1007/BF03027812