DOI QR코드

DOI QR Code

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method

증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구

  • Yu, Yeon-Tae (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources)
  • 유연태 (한국지질자원연구원 자원활용연구부)
  • Published : 2003.05.01

Abstract

The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

References

  1. C. Hayashi, J. Vac. Sci. Technol. A5, 1376 (1987)
  2. N. Wada, J Surf. Sci. Soc. Japan, 8, 9 (1987)
  3. A. Kato and Suyama, J. Surf. Sci. Sco. Japan, 8, 20 (1987)
  4. 三好忠顔, 日本化學會誌, 10, 831 (1984)
  5. E. Fuchita, M. Oda and S. Kashu, Proc. 7th ICVM Tokyo Japan, 831 (1982)
  6. C. G. Cranqvist and R. A. Buhrman, J. Appl. Phys., 47, 2200 (1976) https://doi.org/10.1063/1.322870
  7. K. S. Mazdiyaski, R. T. Dolloff and J. S. Smith, J. Am. Ceram. Soc., 52, 523 (1669) https://doi.org/10.1111/j.1151-2916.1969.tb09157.x
  8. J. R. Thomas, J. Appl. Phys., 37, 2914 (1966) https://doi.org/10.1063/1.1782154
  9. T. Shiosaki and A. Kawabata, Japan J. Appl. Phys., 10, 153 (1971)
  10. E. Buckle, P. Takiropoulos and K. C. Pointion, Inter. Metals Rev., 31, 258 (1986) https://doi.org/10.1179/095066086790324203
  11. T. Ohno, J. Cryst. Growth, 70, 541 (1984) https://doi.org/10.1016/0022-0248(84)90316-6
  12. Y.T.Yu and Y.Tsu, Materials Transaction, JIM, 33, 1178 (1992) https://doi.org/10.2320/matertrans1989.33.1178
  13. Y. T. Yu and Y. Tsu, Materials Transaction, JIM, 34, 809 (1993) https://doi.org/10.2320/matertrans1989.34.809
  14. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Co., 350 (1977)
  15. W. H. Hall, J. Inst. Met., 75, 1127 (1950)
  16. W. H. Hall, Proc. Phys. Soc., A62, 741 (1949) https://doi.org/10.1088/0370-1298/62/11/110
  17. J. Harada, S. Yao and A. Ichimiya, J. Phys. Soc. Japan, 48, 1625 (1980) https://doi.org/10.1143/JPSJ.48.1625
  18. K. Ohshima, S. Yatsuya and J. Harada, J. Phys. Soc. Japan, 50, 3071 (1981) https://doi.org/10.1143/JPSJ.50.3071
  19. N. Wada, J. Surf. Sci. Soc. Japan, 8, 305 (1987) https://doi.org/10.1380/jsssj.8.305
  20. 早川宗八郞, 粉體物性測定法, 朝倉書店, 7 (1973)
  21. J. Harada and K. Ohshima, Surf. Sci., 106, 51 (1981) https://doi.org/10.1016/0039-6028(81)90180-1
  22. Y. Kashiwase, I. Nishida, Y. Kaihuma and K. Kimoto, J. Phys. Soc. Japan, 38, 899 (1975) https://doi.org/10.1143/JPSJ.38.899
  23. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Co., 138 (1977)
  24. B. E. Warren, X-ray Diffraction, Dover Pub. Inc., 199 (1968)
  25. B. E. Warren, X-ray Diffraction, Dover Pub. Inc., 117 (1968)
  26. E. Matsubara, K. Okuda, Y. Waseda and T. Saito, Proc. 5th Topical Meeting Crys. Growth Mech., 361 (1992)
  27. International Tables for X-ray Crystallography Vol. IV, 71 (1974)