DOI QR코드

DOI QR Code

Microstructures and Electrical Properties of Niobium-doped Bi4Ti3O12 Thin Films Fabricated by a Sol-gel Route

졸-겔 법으로 성장시킨 Nb가 첨가된 Bi4Ti3O12 박막의 미세구조와 전기적 성질

  • Kim, Sang-Su (Department of Physics, Changwon National University) ;
  • Jang, Ki-Wan (Department of Physics, Changwon National University) ;
  • Han, Chang-Hee (Department of Physics, Changwon National University) ;
  • Lee, Ho-Sueb (Department of Physics, Changwon National University) ;
  • Kim, Won-Jeong (Department of Physics, Changwon National University) ;
  • Choi, Eun-Kyung (Department of Physics, Changwon National University) ;
  • Park, Mun-Heum (Department of Physics, Changwon National University)
  • 김상수 (창원대학교 자연과학대학 물리학과) ;
  • 장기완 (창원대학교 자연과학대학 물리학과) ;
  • 한창희 (창원대학교 자연과학대학 물리학과) ;
  • 이호섭 (창원대학교 자연과학대학 물리학과) ;
  • 김원정 (창원대학교 자연과학대학 물리학과) ;
  • 최은경 (창원대학교 자연과학대학 물리학과) ;
  • 박문흠 (창원대학교 자연과학대학 물리학과)
  • Published : 2003.05.01

Abstract

Bismuth layered structure ferroelectric thin films, $Bi_4$$Ti_3$$O_{12}$ / (BTO) and Nb-doped BTO (BTN) were prepared on the Pt(111)/Ti/$SiO_2$/Si(100) substrates by a sol-gel route. We investigated the Nb-doping effect on the grain orientation and ferroelectric properties. $Nb^{5+}$ ion substitution for $Ti^{4+}$ ion in perovskite layers of BTO decreased the degree of c-axis orientation and increased the remanent polarization (2Pr). The fatigue resistance of Nb-doped BTO thin film was shown to be superior to that of BTO, and the leakage current of Nb-doped BTO thin film was decreased about 1 order of magnitude compared with BTO. The improvement of ferroelectric properties with $Nb^{5+}$ doping in BTO could be attributed to the changes in space charge densities and grain orientation in the thin film.

References

  1. Y. Hou, X.-H. Xu, H. Wang, M. Wang and S.-X. Shang, Appl. Phys. Lett., 78(12), 1733 (2001) https://doi.org/10.1063/1.1355012
  2. S. Okamura, Y. Yagi, K. Mori, G. Fujihashi, S. Ando and T. Tsukamoto, Jpn. J. Appl. Phys., 36, 5889 (1997) https://doi.org/10.1143/JJAP.36.5889
  3. H. D. Chen, K. R. Udayakumar, C. J. Gaskey and L. E. Cross, Appl. Phys. Lett., 67, 3411 (1995) https://doi.org/10.1063/1.115263
  4. C. A. Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott, Nature, 374, 627 (1995) https://doi.org/10.1038/374627a0
  5. T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielson, E. H. Poindexter and D. J. Keeble, Appl. Phys. Lett., 77, 127 (2000) and references therein https://doi.org/10.1063/1.126898
  6. B. Yang, S. Aggarwal, A. M. Dhote, T. K. Song, R. Ramesh and J. S. Lee, Appl. Phys. Lett., 71, 356 (1997) https://doi.org/10.1063/1.119536
  7. O. Auciello and R. Ramesh,, MRS Bulletin, 21, 31 (1996) https://doi.org/10.1557/S0883769400035314
  8. T. W. Noh, B. S. Kang, Y. W. So, B. H. Park and S. D. Bu, J. Korean Phys. Soc., 39, S35 (2001)
  9. T. Li, Y. Zhu, S. B. Desu, C. H. Peng and M. Nakata, Appl. Phys. Lett., 68, 616 (1996) https://doi.org/10.1063/1.116486
  10. S. E. Cummins and L. E. Cross, J. Appl. Phys., 39, 2268 (1968) https://doi.org/10.1063/1.1656542
  11. T. Kijima, M. Ushikubo and H. Matsunaga, Jpn. J. Appl. Phys., 38, 127 (1999) https://doi.org/10.1143/JJAP.38.127
  12. M. Yamaguchi and T. Nagatomo, Jpn. J. Appl. Phys., 37, 5166 (1998) https://doi.org/10.1143/JJAP.37.5166
  13. T. Kijima, M. Ushikubo and H. Matsunaga, Jpn. J. Appl. Phys., 38, 127 (1999) https://doi.org/10.1143/JJAP.38.127
  14. Y. Noguchi, I. Miwa, Y. Goshima and M. Miyayama, Jpn. J. Appl. Phys., 39, L1259 (2000) https://doi.org/10.1143/JJAP.39.L1259
  15. B. H. Park, B. S. Kang, S. D.Bu, T. W. Noh, J. Lee and W. Jo, Nature, 401, 682 (1999) https://doi.org/10.1038/44352
  16. S. S. Kim, T. K. Song, J. K. Kim and J. Kim, J. Appl. Phys., 92(4), 2213 (2002) https://doi.org/10.1063/1.1494840
  17. J. S. Kim, S. S. Kim, J. K. Kim and T. K. Song, Jpn. J. Appl. Phys., 41, 6451 (2002) https://doi.org/10.1143/JJAP.41.6451
  18. S. D. Bu, B. S. Kang, B. H. Park and T. W. Noh, J. Korean Phys. Soc., 36(1), L9 (2000)
  19. B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H. D. Kim, T. H. Kim and W. Jo, Appl. Phys. Lett., 74(13), 1907 (1999) https://doi.org/10.1063/1.123709
  20. M. Yamaguchi, K. Kawanabe, T. Nagatomo and O. Omoto, Mater. Sci. and Engin., B41, 138 (1996) https://doi.org/10.1016/S0921-5107(96)01640-6
  21. A. D. Rae, J. G. Thompson, R. L. Withers and A. C. Willis, Acta Crystallogr., B46, 474 (1990) https://doi.org/10.1107/S0108768190003251
  22. Q. Tan, J. Li and D. Viehland, Appl. Phys. Lett., 75, 418 (1999) https://doi.org/10.1063/1.124394
  23. L. Baudry, J. Appl. Phys., 86, 1096 (1999) https://doi.org/10.1063/1.371147
  24. Y. Noguchi and M. Miyayama, Appl. Phys. Lett., 78(13), 1903 (2001) https://doi.org/10.1063/1.1357215
  25. B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H. D. Kim, T. H. Kim and W. Jo, Appl. Phys. Lett., 74(13), 1907 (1999) https://doi.org/10.1063/1.123709