DOI QR코드

DOI QR Code

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part II: Analysis of Particle Formation Estimated by Reaction Factors

화학기상응축 공정에서 TiO2나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 -Part II 분말형성에 대한 반응인자적 분석

  • Lee, Chang-Woo (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Yu, Ji-Hun (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Im, Sung-Soon (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Yun, Sung-Hee (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Choa, Yong-Ho (Department of New-Materials Technology, Hanyang University)
  • 이창우 (한양대학교 재료화학공학부) ;
  • 유지훈 (한양대학교 재료화학공학부) ;
  • 임성순 (한양대학교 재료화학공학부) ;
  • 윤성희 (한양대학교 재료화학공학부) ;
  • 이재성 (한양대학교 재료화학공학부) ;
  • 좌용호 (한양대학교 생산공학과)
  • Published : 2003.05.01

Abstract

Characteristics of $TiO_2$nanoparticles controlled by precursor flow rate and reaction temperature in chemical vapor condensation process were interpreted in the view of decisive reaction factors, i.e. supersaturation ratio, concentration of vapor molecule, collision frequency and rate, and residence time, which directly affect the particle size and size distribution in CVC reactor. As results, the increases of precursor flow rate and reaction temperature induced the increase in the average sizes of $TiO_2$ nanoparticles in CVC reactor by acceleration of coagulation growth due to the increase of collision between $TiO_2$vapor molecules and particles. The effects of reaction factors on the characteristics of$TiO_2$nanoparticles were discussed with considering particle formation process in CVC reactor under given process parameters.

References

  1. W. Chang, G. Skandan, H. Hahn, S. C. Danforth and B. H. Kear, NanoStructured Materials, 4(3), 345 (1994) https://doi.org/10.1016/0965-9773(94)90144-9
  2. W. Chang, G. Skandan, S. C. Danforth, B. H. Kear and H. Hahn, NanoStructured Materials, 4(5), 507 (1994) https://doi.org/10.1016/0965-9773(94)90058-2
  3. B. H. Kear and P. R. Strutt, NanoStructured Materials, 6(1/2), 227 (1995) https://doi.org/10.1016/0965-9773(95)00046-1
  4. R. L. Axelbaum, D. P. DuFaux and C. A. Frey, J. Mater. Res., 11(4), 948 (1996) https://doi.org/10.1557/JMR.1996.0119
  5. J. H. Yu, J. S.Lee and K. H. Ahn, Scripta Materilia, 44(8/9), 2213 (2001) https://doi.org/10.1016/S1359-6462(01)00747-3
  6. C. W. Lee, J. H. Yu, S. S. Im, S. H. Yun, J. S. Lee, and Y. H. Choa, Korean Journal of Materials Research, 135), 323 (2003) https://doi.org/10.3740/MRSK.2003.13.5.323
  7. S. K. Friedlander, Smoke, Dust, and Haze-Fundamentals of Aerosol Dynamics, 2nd ed., p.251, Oxford, U.P., Oxford, New York (2000)
  8. G. V. Samsonov, The Oxide Handbook, 2nd ed., p.149, IFI/Plenum Publishing Co. New York (1982)
  9. W. C. Hinds, Aerosol Technology, 2nd ed., p.254, John Wiley and Sons Inc., New York, (1982)
  10. S. Sivaram, Chemical Vapor Deposition, p. 14, Van Nostrand Reihold International Thompson Publishing Inc., New York (1995)
  11. G.D.Ulrich, Combust. Sci. Technol., 4, 47 (1971) https://doi.org/10.1080/00102207108952471
  12. G. D. Ulrich and J. W. Riehl, J. Colloid Interface Sci., 87(1), 257 (1982) https://doi.org/10.1016/0021-9797(82)90387-3
  13. Y. Xiong and S. E. Pratsinis, J. Aerosol Sci., 22, 637 (1991) https://doi.org/10.1016/0021-8502(91)90017-C
  14. I. Mori, M. Nishikawa and Y. Iwasaka, The Sci. of the Total Environment, 224, 87 (1998) https://doi.org/10.1016/S0048-9697(98)00323-4
  15. M. Smoluchowski, Bull. Acad. Sci., Cracow, 1a, 28 (1911)