DOI QR코드

DOI QR Code

Effect of Ultrasonic Pretreatment on Analysis of Potassium Ion in Human Urine Using 15-Crown-5-Anthracene-based Membrane

15-Crown-5-Anthracene 막을 이용한 요 중의 칼륨이온 분석에 미치는 초음파 전처리의 효과

  • Lee, Ji-Young (Department of Chemistry, Kyungpook National University) ;
  • Chang, Hye-Young (Institute of Basic Sciences, Kyungpook National University) ;
  • Bae, Zun-Ung (Department of Chemistry, Kyungpook National University )
  • 이지영 (경북대학과 자연과학대학 화학과) ;
  • 장혜영 (경북대학교 기초과학연구소) ;
  • 배준웅 (경북대학과 자연과학대학 화학과)
  • Published : 2003.02.20

Abstract

The effect of ultrasonic decomposition was introduced to develop a pretreatment method for the analysis of potassium ion in human urine by potentiometry. N-(4’-benzo-15-crown-5)-anthracene-9-imine, which has a good selectivity coefficient for potassium against ammonium, was used as an ion-selective material for the determination of potassium in urine with relatively high concentration of $NH_4{^+}$. Protenis in urine be removed by 85.1% when the sample acidified with 1.0 M $HNO_3$ was preteated for 100 s by sonication. Potential response of the membrane electrode in the pretreated urine had a slope of 54.6(${\pm}0.2,\;n=5$) mV/decade over the linear range of log $[K^+]$=-5~-1(r=0.9997). When an oxidant, $H_2O_2$, was addwd to the urine sonicated with $HNO_3$, the deproteinization increased 10% more than that in case if only $HNO_3$ and then the maximum ratio of ca. 95% was obtained. Moreover, the Nernstian slope for $K^+$ added to the urinary sample increased to 56.7(${\pm}0.1,\;n=3$) mV/decade. When the calibration curves were measured, the slopes did not vary even after the electrode was successively used 20 times with ultrasonic cleaning. The results showed that an ultrasonic pretreatment method provides simplicity in use, reduced treatment time and improved potentiometric characteristics of the membrane as the method effectively removes ca. 95% of proteins in urine.

Keywords

Ultrasonic Pretreatment;15-crown-5;Potassium Ion;Urine

References

  1. Barroso, M. B.; Jimenez, R. M.; Alonso, R. M.; Ortiz, E. J. Chromatogr. B 1996, 675, 303. https://doi.org/10.1016/0378-4347(95)00349-5
  2. Khanskhali, M. H.; Bhanger, M. I.; Khand, F. D. J. Chromatogr. B 1996, 675, 147. https://doi.org/10.1016/0378-4347(95)00338-X
  3. Bohrer, D.; Pomblum, S. G.; Do Nascimento, P. C.; Bastianello, J. S.; Ramirez, A. Anal. Lett. 2000, 33, 1265. https://doi.org/10.1080/00032710008543121
  4. Floate, Simon; Hyde, Michael; Compton, Richard G. J. Electroanal. Chem. 2002, 523(1-2), 49. https://doi.org/10.1016/S0022-0728(02)00709-X
  5. Capelo, J. L.; Lavilla, I.; Bendicho, C. Anal. Chem. 2001, 73(15), 3732. https://doi.org/10.1021/ac010193o
  6. Tiehm, A.; Nickel, K.; Zellhom, M.; Neis, U. Water Res. 2001, 35(8), 2003. https://doi.org/10.1016/S0043-1354(00)00468-1
  7. Nelligan, Thomas J. Mater. World 1996, 4(11), 637.
  8. Seymour, I. J.; Burfoot, D.; Smith, R. L.; Cox, L. A.; Lockwood, A. Int. J. Food Sci. Tech. 2002, 37(5), 547. https://doi.org/10.1046/j.1365-2621.2002.00613.x
  9. Ladenson, J. H. Clin. Chem. 1979, 25(5), 757.
  10. Khalil, S. A. H.; Moody, G. J.; Thomas, J. D. R. Anal. Lett. 1986, 19(17-18), 1809. https://doi.org/10.1080/00032718608066505
  11. Heidrich, J. P.; Niemeier, A.; Seyfarth, M.; Dibbelt, L. Clin. Chem. Lab. Med. 2000, 38(3), 215. https://doi.org/10.1515/CCLM.2000.031
  12. Cattrall, R. W.; Tribuzio, S.; Freiser, H. Anal. Chem. 1974, 46, 2223. https://doi.org/10.1021/ac60350a026
  13. Petranek, J.; Ryba, O. Anal. Chim. Acta 1974, 72, 375. https://doi.org/10.1016/S0003-2670(01)95868-4
  14. Bae, Z.-U.; Lee, S.-B.; Chang, S.-H.; Kim, U.-R. J. Kor. Chem. Soc. 2001, 45, 31.
  15. Tamura, H.; Kimura, K.; Shono, T. Bull. Chem. Soc. Jpn. 1980, 53, 547. https://doi.org/10.1246/bcsj.53.547
  16. Mizobuchi, M.; Ohmae, H.; Umoto, F.; Tanaka, T.; Ichimura, K.; Ueda, E.; Itano, T. Clin. Chem. 1983, 29(2), 408.
  17. Bradford, M. M. Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3