An Application of High-Power Ultrasound to Rubber Recycling

  • Hong, Chang-Kook (Department of Chemical Engineering and Center for Composite Materials, University of Delaware) ;
  • Isayev, A.I. (Institute of Polymer Engineering, The University of Akron)
  • Published : 2003.06.30

Abstract

The application of powerful ultrasound to rubber recycling is a very recent field of study. An ultrasonic field creates high frequency extension-contraction stresses by acoustic cavitation. The breakdown of rubber network occurs primarily around pulsating cavities due to the highest level of strain produced by high-power ultrasound. Stronger reductions of cross-link density were observed at a higher pressure, indicating an important role of pressure during ultrasonic recycling. Visible bubbles were observed during ultrasonic treatment as a proof of acoustic cavitation. Shearing effect has a significant influence on improving the efficiency of ultrasonic treatment. After the ultrasonic treatment, the cross-link densities of NR/SBR blends were lower than those of NR and SBR due to the reduced degree of unsaturation and chemical reactions. Carbon black fillers increase the probability of bond scission during ultrasonic treatment, due to the restricted mobility. The mechanical properties of ground tire rubber (GRT)/HDPE blends were improved by ultrasonic treatment and dynamic revulcanization. Ultrasonic treatment of GRT in the presence of HDPE matrix was found to give better mechanical properties due to the chemical reactions between rubber and plastic phases.

References

  1. W. Klingensmith and K. Baranwal, 'Recycling of Rubbers: An Overview,' Rubber World, June, 41(1998)
  2. S. R Fix, 'Microwave Devulcanization of Rubber,' Elastomerics, 112(6), 38 (1980)
  3. P. P. Nicholas, 'The Scission of Polysulfide Crosslinks in Scrap Rubber Particles through Phase Transfer Catalysis,' Rubber Chem. Technol., 55, 1499 (1982) https://doi.org/10.5254/1.3535945
  4. B. Siuru, 'New Technology Recycles Old Tires For New Uses,' Scrap Tire News, 12(Dec.), 14 (1997)
  5. B. Adhikari, D. De and S. Maiti, 'Reclamation and Recycling of Waste Rubber,' Prog. Polym. Sci., 25, 909 (2000) https://doi.org/10.1016/S0079-6700(00)00020-4
  6. A. I. Isayev, J. Chen and A. Tukachinsky, 'Novel Ultrasonic Technology for Devulcanization of Waste Rubbers,' Rubber Chem. Technol., 68, 267 (1995) https://doi.org/10.5254/1.3538741
  7. A. I. Isayev, S. P. Yushanov, D. Schwonn and A. Tukachinsky, 'Modeling of Ultrasonic Devulcanization of Tire Rubbers and Comparison with Experiments,' Plastics Rubber Compo Proc. Appl., 25, 1 (1996)
  8. A Tukachinsky, D. Schwonn and A. I. Isayev, 'Devulcanization of Waste Tire Rubber by Powerful Ultrasound,' Rubber Chem. Technol., 69, 92 (1996) https://doi.org/10.5254/1.3538362
  9. M. Tapale and A. I. Isayev, 'Continuous Ultrasonic Devulcanization of Unfilled NR Vulcanizates,' J. Appl, Polym. Sci., 70, 2007 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981205)70:10<2007::AID-APP17>3.0.CO;2-D
  10. A. I. Isayev, S. P. Yushanov and J. Chen, 'Ultrasonic Devulcanization of Rubber Vulcanizates. II. Si-mulation and Experiment,' J. Appl, Polym. Sci., 59, 815 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960131)59:5<815::AID-APP8>3.0.CO;2-Z
  11. A. I. Isayev, S. H. Kim and V. Levin, 'Superior Mechanical Properties of Reclaimed SBR with Bimodal Network,' Rubber Chem. Technol., 70, 194 (1997) https://doi.org/10.5254/1.3538424
  12. S. T. Johnston, J. Massey, E. von Meerwall, S. H. Kim, V. Levin and A. I. Isayev, 'Ultrasound Devulcanization of SBR: Molecular Mobility of Gel and Sol,' Rubber Chem. Technol., 70, 183 (1997) https://doi.org/10.5254/1.3538423
  13. V. Levin, S. H. Kim, A. I. lsayev, J. Massey and E. von Meerwall, 'Ultrasound Devulcanization of Sulfur Vulcanized SBR: Crosslink Density and Molecular Mobility,' Rubber Chem. Technol., 69, 104 (1996) https://doi.org/10.5254/1.3538350
  14. V. Levin, S. H. Kim and A. I. Isayev, 'Vulcanization of Ultrasonically Devulcanized SBR Elastomers,' Rubber Chem. Technol., 70, 120 (1997) https://doi.org/10.5254/1.3538412
  15. V. Levin, S. H. Kim and A. I. Isayev, 'Effect of Crosslink Type on the Ultrasound Devulcanization of SBR Vulcanizates,' Rubber Chem. TechnI., 70, 641 (1997) https://doi.org/10.5254/1.3538450
  16. S. P. Yushanov, A. I. Isayev and S. H. Kim, 'Ultrasonic Devulcanization of SBR Rubber: Experimentation and Modeling Based on Cavitation and Percolation Theories,' Rubber Chem. Technol., 71, 168 (1998) https://doi.org/10.5254/1.3538478
  17. J. Yun, A. I. Isayev, S. H. Kim and M. Tapale, 'Comparative analysis of ultrasonically devulcanized unfilled SBR, NR and EPDM rubbers,' J. Appl. Polyrn. Sci., 88, 434 (2003) https://doi.org/10.1002/app.11741
  18. B. Diao, A. I. lsayev, V. Levin and S. H. Kim 'Surface Behavior of Blends of SBR with Ultra-sonically Devulcanized Silicon Rubber,' J. Appl, Polym. Sci., 69, 2691 (1998)
  19. S. E. Shim and A. I. Isayev, 'Ultrasonic Devulcanization of Precipitated Silica-Filled Silicone Rubber,' Rubber Chem. Technol., 74, 303 (2001) https://doi.org/10.5254/1.3544952
  20. S. E. Shim, S. Ghose and A. I. Isayev, 'Formation of Bubbles during Ultrasonic Treatment of Cured Poly (Dimethyl Siloxane),' Polymer, 43, 5535 (2002) https://doi.org/10.1016/S0032-3861(02)00392-0
  21. S. E. Shim, J. Parr, E. von Meerwall and A. I. Isayev, 'NMR Relaxation and Pulsed Gradient NMR Diffusion Measurements of Ultrasonically Devul-canized Poly (Dimethyl Siloxane),' J. Phys. Chem. B, 106, 12072 (2002) https://doi.org/10.1021/jp0257247
  22. S. Ghose and A. I. Isayev, 'Recycling of Unfilled Polyurethane Rubber using High-Power Ultrasound,' J. Appl. Polym. Sci., 88, 980 (2003) https://doi.org/10.1002/app.11740
  23. W. C. Warner, 'Methods of Devulcanization,' Rubber Chem. Technol., 67, 559 (1994) https://doi.org/10.5254/1.3538692
  24. A. I. Isayev, S. P. Yushanov and J. Chen, 'Ultr-asonic Devulcanization of Rubber Vulcanizates. I. Process model,' J. Appl. Polym. Sci., 59, 803 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960131)59:5<803::AID-APP7>3.0.CO;2-#
  25. A. I. Kasner and E. A. Meinecke, 'Porosity in Rubber, a Review,' Rubber Chem. Technol., 69, 424 (1996) https://doi.org/10.5254/1.3538379
  26. A. N. Gent and D. A. Tomkins, 'Nucleation and Growth of Gas Bubbles in Elastomers,' J. Appl. Physics, 40, 2520 (1969) https://doi.org/10.1063/1.1658026
  27. A. N. Gent, 'Cavitation in Rubber: A Cautionary Tale,' Rubber Chem. Technol., 63, G49 (1990) https://doi.org/10.5254/1.3538266
  28. V. V Yashin and A. I. Isayev, 'A Model for Rubber Degradation under Ultrasonic Treatment: Part II. Rupture of Rubber Network and Comparison with Experiments,' Rubber Chem. Technol., 73, 325 (2000) https://doi.org/10.5254/1.3547594
  29. A. J. Kinloch and R. J. Young, 'Fracture behavior of polymers,' Applied Science Publishers, London, 1983
  30. H. H. Kausch, 'Polymer Fracture,' Springer-Verlag, Berlin, 1987
  31. V. V. Yashin and A. I. Isayev, 'A Model for Rubber Degradation under Ultrasonic Treatment: Part I. Acoustic Cavitation in Viscoelastic Solid,' Rubber Chem. Technol., 72, 741 (1999) https://doi.org/10.5254/1.3538831
  32. P. J. Flory and J. Rehner, Jr., 'Statistical Mechanics of Cross-Linked Polymer Networks: II. Swelling,' J. Chem. Phys., II, 521 (1943)
  33. P. J. Flory, 'Statistical Mechanics of Swelling of Network Structures,' J. Chem. Phys., 18, 108 (1950) https://doi.org/10.1063/1.1747424
  34. G. Kraus, 'Swelling of Filler-Reinforced Vulcanizates,' J. Appl, Polym. Sci., 7, 861 (1963) https://doi.org/10.1002/app.1963.070070306
  35. A. I. Isayev, J. Chen and S. P. Yushanov, in 'Simulation of Materials Processing: Theory, Methods and Applications,' S. F. Shen and P. Dawson, Eds., Balkema, Rotterdam, 1995
  36. C. K. Hong and A. I. Isayev, 'Ultrasonic Devulcanization of Unfilled SBR under Static and Continuous Conditions,' Rubber Chem. Technol., 75, 133 (2002) https://doi.org/10.5254/1.3547665
  37. S. D. Lubetkin, in 'Controlled Particle, Droplet and Bubble Formation,' Chap. 6, edited by D. Wedlock, Butterworth-Heinemann Ltd., Oxford, 1994
  38. H. Kwak and R Panton, 'Gas Bubble Formation in Non-Equilibrium Water Gas Solutions,' J. Chem. Phys., 78(9), 5795 (1983) https://doi.org/10.1063/1.445422
  39. D. Niyogi, R Kumar and K. Gandhi, 'Modeling of Bubble-Size Distribution in Free Rise Polyurethane Foams,' AICHE J., 38(8), 1170 (1992) https://doi.org/10.1002/aic.690380805
  40. J. Han and C. D. Han, 'Bubble Nucleation in Polymeric Liquids. 2. Theoretical Considerations,' J. Polym. Sci.: Part B: Polym. Phys., 28, 743 (1990) https://doi.org/10.1002/polb.1990.090280510
  41. L. E. Kinsler, A. Frey, A. Coppens and J. Sanders, 'Fundamentals of Acoustics,' Wiley, NY, 1982
  42. J. O. Hirschfelder, C. Curtis and R Bird, 'Molecular Theory of Gases and Liquids,' Wiley, NY, 1954
  43. J. Brandrup and H Immergut, ed., 'Polymer Hand-book,' 3rd ed., Wiley, NY, 1989
  44. A. J. Tinker and K. P. Jones, 'Blends of Natural Rubber,' Chapman & Hall, NY, 1998
  45. C. K. Hong and A. I. Isayev, 'Continuous Ultrasonic Devulcanization of Carbon Black-Filled NR Vulcanizates,' J. Appl. Polym. Sci., 79, 2340 (2001) https://doi.org/10.1002/1097-4628(20010328)79:13<2340::AID-APP1042>3.0.CO;2-4
  46. C. K. Hong and A. I. Isayev, 'Continuous Ultrasonic Devulcanization of NR/SBR Blends,' J. Appl. Polym. Sci., 83, 160 (2002) https://doi.org/10.1002/app.10033
  47. A. I. Isayev and C. K. Hong, 'Novel Ultrasonic Process for in-situ Copolymer Formation and Compatibilization of Immiscible Polymers,' Polym. Eng. Sci., 43(1), 91 (2003) https://doi.org/10.1002/pen.10008
  48. S. Wolf and M. J. Wang, in 'Carbon Black,' Ed., J. B. Donnet, R C. Bansal and M. J. Wang, Chap. 9, Science and Technology, NY, 1993
  49. L. Bateman, 'The Chemistry and Physics of Rubberlike Substance,' Wiley, NY, 1963
  50. A. Y. Coran and R. Patel, 'Rubber-Thermoplastic Compositions. 1. EPDM-Polypylene Thermoplastic Vulcanizates,' Rubber Chem. Technol., 53, 141 (1980) https://doi.org/10.5254/1.3535023
  51. F. Cai and A. I. Isayev, 'Dynamic Vulcanization of Thermoplastic Copolyester Elastomer Nitrile Rubber Alloys. I. Various Mixing Methods,' J. Elast. Plast., 25, 74 (1993) https://doi.org/10.1177/009524439302500106
  52. F. Cai and A. I. Isayev, 'Dynamic Vulcanization of Thermoplastic Copolyester Elastomer Nitrile Rubber Alloys. 2. Rheology, Morphology and Properties,' J. Elast. Plast., 25, 249 (1993) https://doi.org/10.1177/009524439302500305
  53. C. K. Hong and A. I. Isayev, 'Blends of Ultrasonically Devulcanized and Virgin Carbon Black Filled NR,' J. Mater. Sci., 37, 385 (2002) https://doi.org/10.1023/A:1013625018121
  54. S. K. De and A. K. Bhowmick Eds, 'Thermoplastic Elastomers from Rubber-Plastic Blends,' Ellis Horwood, NY, 1990
  55. C. K. Hong and A. I. Isayev, 'Plastic/Rubber Blends of Ultrasonically Devulcanized GRT with HDPE,' J. Elast. Plast., 33, 47 (2001) https://doi.org/10.1106/5AMQ-XEAY-A05B-P1FY
  56. P. K. Pramanik and W. E. Baker, 'Toughening of Ground Rubber Tire Filled Thermoplastic Compounds Using Different Compatibilizer Systems,' Plast. Rubb. Compo Proc. Appl., 24(4), 229 (1995)