Treatment of Halogen Gases, BCl3 and CF4, used in Semiconductor Process by Using Inorganic Gas Adsorption Agents

무기흡착제를 이용한 반도체 공정에서 사용되는 할로겐 가스 (BCl3, CF4) 의 처리 및 측정에 관한 연구

  • Lim, H.B. (Department of Chemistry, College of Natural Sciences, Dankook University) ;
  • Hwang, Cheong-Soo (Department of Chemistry, College of Natural Sciences, Dankook University) ;
  • Park, Jeong-Jun (Department of Chemistry, College of Natural Sciences, Dankook University)
  • 임흥빈 (단국대학교 자연과학대학 화학과) ;
  • 황청수 (단국대학교 자연과학대학 화학과) ;
  • 박정준 (단국대학교 자연과학대학 화학과)
  • Received : 2002.06.07
  • Accepted : 2003.08.14
  • Published : 2003.10.25


Halogen gases such as $BCl_3$ and $CF_4$ are among the most problematic gases used in semiconductor process. They raise serious environmental and health problems due to their extreme toxicity. This study is to develop a method to effectively remove those gases during the process by using various types of inorganic gas adsorption agents such as zeolite A, modified AgA zeolite, ZnO, and $AgMnO_3$, which have not been attempted in the conventional methods. The removal efficiencies of the gases were both qualitatively and quantitatively measured by a FT-IR spectrophotometer. The whole device for the measurement has been designed and built in our lab. The removal efficiencies of the gases were compared between those used resins. The experimental result revealed that ZnO showed the best removal efficiency for BCl3 gas that had removed 0.094 g per 1 g of the resin used. For $CF_4$ gas, none of the solid resins was able to remove the gas effectively. However, liquid $CHCl_3$ showed some removal ability of the $CF_4$ gas.


$BCl_3$;$CF_4$ gas treatment;Zeolite;$AgMnO_3$;ZnO;Semiconductor process


Supported by : 단국대학교


  1. W. Zhang, M. Jia, J. Yu, and T. Wu, Chem. Mater, 11, 920 (1999)
  2. W. Zhang, H. Yahiro, N. Mizuno, J. Izumi, and M. Iwamoto, Langmuir, 9, 2397 (1993)
  3. B. K. Na, A. B. Walters, and M. A. Vannice, J. Catalyst., 140 (2), 585 (1993)
  4. D. M. Kim, and H. S. Mihn, 단국대학교 논문집, 33, 79 (1998)
  5. D. M. Kim, and J. C. Lee, 단국대학교 논문집, 34, 141 (1999)
  6. A. Takahashi, R.T.Yang, C. L. Munson, and D. Chinn, Ind. Eng. Chem. Res., 40, 3979 (2001)
  7. D. S. Kim, S. Hwan, and Y. Kim, Bull. Korean Chem. Soc., 10 (3), 234 (1989)
  8. C. L. Hartz, J. W. Bevan, B. A. Wofford, and M. W. Jackson, Environ. Sci. Technol., 32, 682 (1998)
  9. A. Kozawa, K. V. Kordesch, Electrochim. Acta, 26, 1489 (1981)
  10. Y. Kim, Y. W. Han, and K. Seff, Bull. Korean Chem. Soc., 7 (3),190 (1986)
  11. K. Urashima, K. G. Kostov, J. S. Chang, Y. Okayasu, T. Iwaizumi, K. Yoshimura, and T. Kato, Proc. 1999 IEEE Ind. Appl. Meeting, 2, 1136 (1999)
  12. J. J. Park, H. B. Lim, and C. S. Hwang, 분석과학, 16 (3), 125 (2003) In Press
  13. N. A. Sezgi, T. Dogu, H. O. Ozbelge, Ind. Eng. Chem. Res., 36, 5537 (1997)
  14. J. B. L. Martins, E. Longo, and C. A. Taft, Intl. J. Qunt. Chem., 70, 367 (1998)
  15. Y. kim, and K. Sheff, J. Phys. Chem., 91, 671 (1987)
  16. S. Jonas, W. S. Ptak, W. Sadowski, E. Walasek, and C. Paluszkiewicz, J. Electrochem. Soc., 142 (7), 2357 (1995)
  17. B. A. Wofford, M. W. Jackson, C. Hartz, and J. W. Bevan, Environ. Sci. Technol., 33, 1892 (1999)