Monte Carlo Resonance Treatment for the Deterministic Transport Lattice Codes

  • Published : 2003.12.01

Abstract

Transport lattice codes require the resonance integral tables for the resonant nuclides where the resonance integral is a function of the background cross section and can be prepared through a special program solving the slowing down equation. In case the cross section libraries do not include the resonance integral table for the resonant nuclides, the computational prediction produces a large error. We devised a new method using a Monte Carlo calculation for the effective resonance cross sections to solve this problem provisionally. We extended this method to obtain the resonance integral table for general purpose. The MCNP code is used for the effective resonance integrals and the LIBERTE code for the effective background cross sections. We modified the HELIOS library with the effective cross sections and the resonance integral tables obtained by the newly developed Monte Carlo method, and performed sample calculations using HELIOS and LIBERTE. The results showed that this method is very effective for the resonance treatment.

References

  1. 'NJOY91.118 : A Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Evaluated Nuclear Data,' ORNL, RSIC, PSR-171 (1994)
  2. I. I. Bondarenko and et al., 'Group Constants for Nuclear Reactor Calculations,' Consultant Bureau, New York (1964)
  3. P. H. Kier and et al., 'RABBLE, A Program for Computation of Resonance Absorption in Multiregion Reactor Cells,' ANL-7326 (1967)
  4. J. F. Breismeister and et al., 'MCNP - A General Monte Carlo N-Particle Transport Code, Version 48,' LA-12625-M (1997)
  5. K. S. Kim and et al., 'Development of DENT 2D Code Based on the Characteristics Method,' Trans. Am. Nuc. Soc. , 86, 369-371 (2002)
  6. A. C. Aldous, 'Numerical studies of the hydrogen equivalent of some structural materials in their effect on U-238 resonance capture,' UKAEA Report AEEW-M 860, Winfrith, England (1969)
  7. A. M. Weinberg and E. P. Wigner, 'The Physical Theory of Neutron Chain Reactors,' The University of Chicago Press (1958)
  8. R. Goldstein and E. R. Cohen, 'Theory of resonance absorption of neutrons,' Nucl. Sci. Eng. 13, 132-140 (1962) https://doi.org/10.13182/NSE62-1
  9. M. Edenius and et al., 'CASMO-3, A Fuel Assembly Burnup Program Methodology Version 4.4,' STUDSVIK/NFA-89/2 (1989)
  10. J. R. Askew and et al., 'A general description of the lattice code WIMS,' J. British nucl. Energy Soc. 5, 564-585 (1966)
  11. D. C. Leslie and et al., 'Improvements to the theory of resonance escape in heterogeneous fuel I; Regular arrays of fuel rods,' Nucl. Sci. Eng. 22, 78-86 (1965) https://doi.org/10.13182/NSE65-A19764
  12. M. Segev, 'Interpolation of resonance integrals,' Nucl. Sci. Eng. 17,113-118 (1981)
  13. A. Khairallah and J. Recolin, 'Calcul de l' autoprotection resonnante dans les cellules complexes par la methode des sous-groupes,' Proc. Seminar IAEA-SM-154 on Numerical Reactor Calculations, 305-317, I.A.E.A., Vienna (1972)
  14. W. Rothenstein, 'Resonance absorption calculations in thermal reactors,' Progr. Nucl. Energy 5,95-144 (1980) https://doi.org/10.1016/0149-1970(80)90003-7
  15. C. Notari and Z. Garraffo, 'Spatial self-shielding for heterogeneous cells,' Ann. Nucl. Energy 14, 615-618 (1987) https://doi.org/10.1016/0306-4549(87)90096-X
  16. R. J. Stamml' er and et al., 'HELIOS Methods,' Studsvik Scandpower (1998)
  17. A. A. Y. Gagarinski and et al., 'Water-Moderated Hexagonally Pitched Double Lattices of U(80%)O2 + Cu Fuel Rods and Boron Carbide Rods,' HEU-COMP-THERM-008, NEA/NSC/DOC/(95)03/II, Volume II (1995)