Fabrication of a Micro-Structure by Modified DXRL Process

수정된 DXRL 공정에 의한 미세구조 제작

  • 한상필 (한국전자통신연구원 광접속모듈팀) ;
  • 정명영 (한국전자통신연구원 광접속모듈팀) ;
  • 정석원 (전자부품연구원 나노메카트로닉스연구센터) ;
  • 김진태 (한국전자통신연구원 광접속모듈팀)
  • Published : 2003.09.01


Deep X-ray lithography (DXRL), a fabrication method for the production of microstructures with a high aspect ratio, plays an important role in the subsequent electroplanting process. However, secondary radiation is generated during X-ray exposure and damages the resist adhesion to the metal layer. To solve adhesion problems, we modified the conventional DXRL process, changing the sequence of polymer adhesion in DXRL process. With optimized X-ray exposure and development conditions based on a calculated and modified X-ray power spectrum, we fabricated various polymer microstructures and achieved a maximum aspect ratio of 40.


LIGA;Deep X-Ray Lithography;Synchrotron;Micro-Structure


  1. Becker, E. W, Ehrfeld, W, Hagmann, P., Maner, A. and Munchmeyer, D., 1986, 'Fabrication of Microstructures with High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA process),' Microelectronic Engineering, Vol. 4, pp.35-56
  2. Guckel, H., 1998, 'High-Aspect-Ratio MicroMachining via Deep X-Ray Lithography,' P. IEEE, Vol. 86, pp. 1586-1593
  3. Kupka, R. K., Bouamrane, F., Crerners, C. and Megtert, S., 2000, 'Microfabrication: LIGA-X and Applications,' Applied Surface Science, Vol. 164, pp. 97-110
  4. Henry, A. C, McCarley, R. L., Das, S. S. and Malek, G. K., 1999, 'Characteristics of Commercial PMMA Sheets Used in the Fabrication of Extreme High Aspect Ratio Microstructures, J. Electrochem. Soc. Vol. 146, pp. 2631-2636
  5. Ehrfeld, Wand Lehr, H., 1995, 'Deep X-Ray Lithography for the Production of Three-Dimensional Microstructures from Metals, Polymers and Ceramics,' Radiat. Phys. Chem. Vol. 45, pp. 349-365
  6. Choi, J. O., Moore, J. A., Corelli, J. C, Silverman, J. P. and Bakhru. H., 1988, 'Degradation of Poly(methylemthacrylate) by Deep Ultraviolet, X-Ray, Electron Bean and Proton Beam Irradiations,' J. Vac. Sci. Technol. B, Vol. 6, pp. 2286-2289
  7. Tang, M. X., Bankert, M. A., Griffiths, S. U., Ting, A., Boehme, D. R., Wilson, S. and Balser, L. M., 1998, 'PMMA Development Studies Using Various Synchrotron Sources and Exposure Conditions,' SPIE, Vol. 3512, pp. 262-270
  8. Pantenburg, F. J. and Mohr, J., 1995, 'Influence of Secondary Effects on the Structure Quality in Deep XRay Lithography,' Nuclear Instruments and Methods in Physics Research B, Vol. 97, pp. 551-556
  9. El-Kholi, A., Bade, K., Mohr, J., Pantenburg, F. J. and Tang, X. -M., 2000, 'Alternative Resist Adhesion and Electroplating Layer for LIGA Process,' Microsystem Technologies, Vol. 6, pp. 161-164
  10. Perennes, F. and Pantenburg, F. J., 2001, 'Adhesion Improvement in the Deep X-Ray Lithography Process Using a Central Beam-Stop,' Nuclear instruments and Methods in Physics Research B, Vol. 174, pp. 317-323
  11. Cheng, Y, Kuo, N.-Y and Su, C H., 1997, 'Dose Distribution of Synchrotron X-Ray Penetrating Materials of Low Atomic Numbers,' Rev. Sci. instrum., Vol. 68, pp. 2163-2166
  12. Mohr, J., Ehrfeld, Wand Munchmeyer, D., 1988, 'Requirements on Resist Layers in Deep-Etch Synchrotron Radiation Lithography,' J. Vac. Sci. Technol. B, Vol. 6, pp. 2264-2267
  13. Feiertag, G., Schmidt, M. and Schmidt, A., 1995, 'Thermoelastic Deformations of Masks for Deep X-Ray Lithography,' Microelectronic engineering, Vol. 27, pp. 513-516