Proton Conductivity and Methanol Permeability of Sulfonated Polysulfone/PPSQ Composite Polymer Electrolyte Membrane

설폰화된 폴리설폰/PPSQ 유-무기 복합 전해질막의 수소이온 전도도 및 메탄올 투과 특성

  • Kwon Jeongdon (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Changjin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang Yongku (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 권정돈 (한국화학연구원 화학소재연구부) ;
  • 이창진 (한국화학연구원 화학소재연구부) ;
  • 강영구 (한국화학연구원 화학소재연구부)
  • Published : 2004.05.01


Sulfonated polysulfone (SPSF) with poly(phenylmethyl silsesquioxane, PPSQ) composite polymer electrolyte membranes were prepared and their proton conductivity, water uptake and methanol permeability of membranes were characterized. By controlling the ratio of $(CH_3)_3SCI\;and\;CISO_3H$ and reaction time, SPSF with $37\~75\%$ degree of sulfonation were synthesized. The increase of sulfonate groups in the base polymer resulted in the increase of the water uptake in the membranes as well as methanol permeability. Composite membranes were prepared by casting of DMF solution of SPSF and PPSQ. The proton conductivity of the composite membrane at room temperature was $2.8\times10^{-3}\~4.9\times10^{-2}S/cm.$ The increase of PPSQ contents in composite membranes resulted in a decrease in water uptake and methanol permeability. Composite membranes containing $5\%$ PPSQ did not make a significant effect on the proton conductivity nO methanol permeability compared with that of pristine SPSF, but a significant decrease of water uptake was observed.


  1. G. Hoogers in 'Fuel Cell Technology', Ed. by G. Hoogers, p9-1, CRC Press, Boca Raton. FL. (2002)
  2. S. R. Narayanan, T. I. Valdez, and N. Rohatgi in 'Handbook of Fuel Cells', Eds. By W. Vielstich, A. Lamm, and H. A. Gasteiger, p894, John Wiley & Sons, West Sussex (2003)
  3. A. Kuver. I. Vogel, W. Vielstich, J. Power Sources 52, 77(1994)
  4. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I. H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Memb. sci., 214, 245 (2003)
  5. L.J. Hobson, H. Ozu, M. Yamaguchi, and S. Hayase, J. Electrochem. Soc., 148, Al185 (2001)
  6. J. Roziere and D.J. Jones, Annu. Rev. Mater. Res, 33, 503 (2003)
  7. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000)
  8. C. Manea and M. Mulder, J. Membr. Sci, 206, 443 (2002)
  9. F. Wang, M. Hickner, Y. S. Kim. T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci., 197, 231 (2002)
  10. B. Yang and A. Manthiram, Electrochem. Solid State Lett., 6, A229 (2003)
  11. B. Smitha, S. Sridhar, and A. A. Khan, J. Membr. Sci., 225, 63 (2003)
  12. J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, and K. Okamoto, Macromolecules, 35, 9022 (2002)
  13. K. Miyatake, H. Zhou, H. Uchida, and. M. Watanabe, Chem. Comm., 368 (2003)
  14. D.J. Jones and J. Roziere, J Membr. Sci., 185,41 (2001)
  15. B. Kumar and J.P. Fellner, J. Power Sources, 123, 132 (2003)
  16. G. Alberti and M. Casciola, Solid State Ionics, 145, 3 (2001)
  17. P. Dirnitrova, K.A. Friedrich, B. Voget, and U. Stimming, J. Electroanal. Chem., 532, 75 (2002)
  18. P. Staiti and M. Minutoli, J. Power Sources, 90, 231 (2000)
  19. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, J. Appl. Polym. Sci., 77, 1250 (2000)<1250::AID-APP9>3.0.CO;2-R
  20. R. Nolte, K. Ledjeff, M. Bauer, and R. Mulhaupt, J. Membrane Sci., 83, 211 (1993)
  21. Noshay, and L.M. Robeson, J. App. Polym. Sci., 20, 1885 (1976)
  22. J. J. Sumner, S. E. Creager, J. J. Ma, and D. D. DesMarteau, J. Electrochem. Soc., 145, 107 (1998)
  23. B. Ruffrnann, H. Silva, B. Schulte, and S. P. Nunes, Solid State Ionics, 162-163, 269 (2003)

Cited by

  1. Liquid Uptake and Methanol Transport Behaviour of PVDF/SPEEK/TiO2Hybrid Membrane for DMFC vol.8, pp.4, 2005,