DOI QR코드

DOI QR Code

Raman/IR Spectroscopic Characterization of the Ni(dmit)2-Complexes with trans-4-[2-(1-Ferrocenyl)vinyl]-1-Methylpyridinium Chromophore

trans-4-[2-(1-Ferrocenyl)vinyl]-1-Methylpyridinium 발색단을 포함하는 Ni(dmit)2-화합물의 Raman/IR 분광학 특성화

  • 한윤경 (서울여자대학교 화학과) ;
  • 노동윤 (서울여자대학교 화학과)
  • Published : 2004.02.20

Abstract

Keywords

Micro-Raman Spectroscopy;FT-IR;$Ni(dmit)_2$;NLO Chromophore

EXPERIMENTAL SECTION

(FcCHCHPymCH3)x[Ni(dmit)2] complex was prepared by means of the electro-crystallization technique using a typical H-type cell.2 (FcCHCHPymCH3) [Ni(dmit)2]2 and [(n-C4H9)4N][Ni(dmit)2]11 were obtained according to the previously reported procedure. The IR spectra were obtained by the KBr pellet method on a MIDAC FT-IR spectrometer. The micro-Raman measurements were carried out at room temperature using a Raman microscope spectrometer (Renishaw Ltd.) equipped with an He:Ne (λo=6328Å) laser. The incident laser power applied was adjusted to as low as 0.06 mW, and was focused on a 1 μm2 area, because using a higher laser intensity caused the samples to burn. The samples were mounted on a glass microscope slide. Each spectrum was scanned over 20 times between 200 and 2000 cm-1 with a 200 sec time constant at a 1 cm-1 resolution, and the Raman shifts thereby obtained were calibrated against a standard Si peak at 520 cm-1. Typically, more than six hours was required for collecting the Raman data of each sample.

References

  1. Akutagawa, T.; Nakamura, T. Coord. Chem. Rev. 2000, 198, 297. https://doi.org/10.1016/S0010-8545(99)00231-3
  2. Ward, B. H.; Schlueter, J. A.; Geiser, U.; Wang, H. H.; Morales, E.; Parakka, J. P.; Thomas, S. Y.; Williams, J. M. Chem. Mater. 2000, 12, 343. https://doi.org/10.1021/cm990238q
  3. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley, Inc.; NY, 1997.
  4. Sun, S. Q.; Zhang, B.; Wu, P. J.; Zhu, D. B. J.C.S. Dalton Trans. 1997, 277.
  5. Akutagawa, T.; Nakamura, T. Coord. Chem. Rev. 2002, 226, 3. https://doi.org/10.1016/S0010-8545(01)00432-5
  6. Steimecke, G.; Sieler, H.; Kirmse, R.; Hoyer, E. Phospho. Sulfur 1979, 7, 49.
  7. Robertson, N.; Cronin, L. Coord. Chem. Rev. 2002, 227, 93. https://doi.org/10.1016/S0010-8545(01)00457-X
  8. Canadell, E. Coord. Chem. Rev. 1999, 185-186, 629. https://doi.org/10.1016/S0010-8545(99)00015-6
  9. Valade, L.; Legros, J. P.; Bousseau, M.; Cassoux, P.; Garbauskas, M.; Interrante, L. V. J.C.S. Dalton Trans. 1985, 783.
  10. Noh, D. Y.; Lee, H. J.; Kang, H.; Kang, W.; Lee, W. Mol. Cryst. Liq. Cryst. 2002, 376, 269. https://doi.org/10.1080/713738397
  11. Long, N. L. Angew. Chem. Int. Ed. Engl. 1995, 34, 21. https://doi.org/10.1002/anie.199500211
  12. Wang, H. H.; Ferraro, J. R.; Williams, J. M.; Geiser, U.; Schlueter, J. A. Chem. Commun. 1994, 1893.
  13. Cassoux, P. Coord. Chem. Rev. 1999, 185-186, 213. https://doi.org/10.1016/S0010-8545(98)00272-0
  14. Wang, H. H.; Kini, A. M.; Williams, J. M. Mol. Cryst. Liq. Cryst. 1996, 284, 211. https://doi.org/10.1080/10587259608037924
  15. Pokhodnya, K. I.; Faulmann, C.; Malfant, I.; Andreu-Solano, R.; Cassoux, P.; Mlayah, A.; Smirnov, D.; Leotin, J. Syn. Met. 1999, 103, 2016. https://doi.org/10.1016/S0379-6779(98)00287-2
  16. Matsubayashi, G.; Yokozawa, A. J.C.S. Dalton Trans. 1990, 3535.
  17. Pullen, A. E.; Olk, R. M. Coord. Chem. Rev. 1999, 188, 211. https://doi.org/10.1016/S0010-8545(99)00031-4
  18. Cassoux, P.; Valade, L.; Kobayashi, H.; Kobayashi, A.; Clark, R. A.; Underhill, A. E. Coord. Chem. Rev. 1991, 110, 115. https://doi.org/10.1016/0010-8545(91)80024-8
  19. Ramakumar, R.; Tanaka, Y.; Yamaji, K. Phys. Rev. B 1997, 56, 795. https://doi.org/10.1103/PhysRevB.56.795
  20. Han, Y. K.; Noh, D. Y. unpublished data.
  21. Kini, A. M.; Parakka, J. P.; Geiser, U.; Wang, H. H.; Rivas, F.; DiNino, E.; Thomas, S.; Dudek, J. D.; Williams, J. M. J. Mater. Chem. 1999, 9, 883. https://doi.org/10.1039/a809132c
  22. Noh, D. Y.; Underhill, A. E.; Hursthouse, M. B. Syn. Met. 2001, 120, 1053. https://doi.org/10.1016/S0379-6779(00)01211-X